Visitez notre page

 

 

 

 

 

 


Tabea Rebafka

Positions

  • Professor in statistics and machine learning MIA AgroParisTech, INRAE, Université Paris-Saclay
  • Lecturer Ecole polytechnique

     

Research interests

  • Network analysis and random graph models
  • Statistical inference algorithms
  • Uncertainty quantification
  • Deep learning
  • Applications in various domains including ecology, biology, chemistry, industrial production processes

 

Activities

  • Formation continue CNRS Formation Entreprises Introduction au Machine Learning et au Deep Learning avec Python. Prochaine édition du 11 au 13 juin 2025.
  • Vidéo de mon exposé à Mathematic Park intitulé Tous connectés sur les réseaux sociaux. Quels outils mathématiques pour les analyser ? 

 

PhD students

  • Ariane Marandon, co-supervised with Etienne Roquain and Nataliya Sokolovska, 2020-2023.
  • Sara Rejeb, thèse CIFRE avec Safran Aircraft Engines, co-supervised with Catherine Duveau, 2020-2023.
  • Arsen Sultanov, co-supervised with Jean-Claude Crivello (ICMPE) and Nataliya Sokolovska, 2021-2024.
  • Roland Sogan, co-supervised with Fanny Villers, since 2023.

 

Contact 

tabea DOT rebafka AT agroparistech DOT fr

Campus AgroParisTech, Bureau E4.2.16

 

Développement de code

  • R package graphclust released on CRAN, 2023. Hierarchical graph clustering for a collection of networks.
  • R package missSOM released on CRAN. With Sara Rejeb and Catherine Duveau, 2021. Self-organizing maps with built-in missing-data imputation.
  • R package noisySBM released on CRAN. With Fanny Villers and Etienne Roquain, 2020. Implementation of the methods presented in the article Graph inference with clustering and false discovery rate control.
  • R package ppsbm released on CRAN. With Daphné Giorgi, Catherine Matias and Fanny Villers, 2018. This package contains the optimized R code for PPSBM.

     

Publications