Visitez notre page

 

 

 

 

 

 


A regret minimization approach to fixed-point iterations


Séminaire
Organisme intervenant (ou équipe pour les séminaires internes)
MIA PS
Nom intervenant
 Joon Kwon
Résumé
We propose a conversion scheme that turns regret minimizing algorithms into fixed point iterations, with convergence guarantees following from regret bounds. The resulting iterations can be seen as a grand extension of the classical Krasnoselskii--Mann iterations, as the latter are recovered by converting the Online Gradient Descent algorithm. This approach yields new simple iterations for finding fixed points of non-self operators. We also focus on converting algorithms from the AdaGrad family of regret minimizers, and thus obtain fixed point iterations with adaptive guarantees of a new kind. Numerical experiments on various problems demonstrate faster convergence of AdaGrad-based fixed point iterations over Krasnoselskii--Mann iterations.
 
Lieu
Amphi C2 (confimé)
Date du jour
Date de fin du Workshop