Notre but est d'étudier la composition génétique d'une population dans laquelle chaque individu a deux parents, qui contribuent à parts égales au génome de leur enfant. On modélise cette population par un modèle de Moran biparental, caractérisé par une taille de population N. Ensuite on échantillonne un gène dans la population au temps présent et on regarde la loi de sa position (l'ancêtre dans lequel il se trouve) n pas de temps plus tôt. On étudie la convergence de cette loi lorsque n puis N tendent vers l'infini. On obtient que le poids asymptotique d'un ancêtre, lorsque la taille de population tend vers l'infini, est soit égal à 0 (avec probabilité 1/2), soit suit une loi exponentielle de paramètre 1/2. Des extensions sont proposés dans des cas avec sélection, possibilité d'auto-fécondation, et transmission inégale du génome.