Visitez notre page

 

 

 

 

 

 


Stochastic Online Linear Regression: the Forward Algorithm to Replace Ridge

Séminaire
Organisme intervenant (ou équipe pour les séminaires internes)
Scool, INRIA Lille
Nom intervenant
Reda Ouhamma
Résumé

Résumé: We consider the problem of online linear regression in the stochastic setting. We derive high probability regret bounds for online regression and the algorithm. This enables us to compare online regression algorithms more accurately and eliminate assumptions of bounded observations and predictions. Our study advocates for the use of the forward algorithm in lieu of ridge due to its enhanced bounds and robustness to the regularization parameter. Moreover, we explain how to integrate it in algorithms involving linear function approximation to remove a boundedness assumption without deteriorating theoretical bounds. We showcase this modification in linear bandit settings where it yields improved regret bounds. Last, we provide numerical experiments to illustrate our results and endorse our intuitions

Lieu
Amphi C2.0.37
Date du jour
Date de fin du Workshop