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GT Causalité

Séance 2

This session is based on Brady Neal’s lecture notes (Chapter 3, and part of Chapter
4). It also uses [KF09, Chapter 3], [PJS17, Chapters 2 and 6], and [Pea22, Chapters 1
and 2]. Sometimes I refer to [Lau96, Chapter 3] for some proofs.

1 Bayesian networks

Here I note that the explanations in Brady Neal’s lecture notes are quite cryptic, so I
am mostly following the story in [KF09]. Something that does not help in Neal’s notes
is that he amalgamates causality concepts with bayesian networks terminology which are
unrelated with causality. Indeed, in this section we shall not think at all about causality
and only think about independence relations.

To make things a bit more simple, here we consider random variables (X1, . . . , Xd) ∈
X1× . . .Xd with distribution P and we do assume that P admits a density p with respect
to the product measure µ1 × · · · × µd.

We shall use the following vocabulary about DAGs: Pa(X) denote the set of parents
of X, ie. nodes Y such that there is a directed edges Y → X; NonDesc(X) the set of non
descendants of X, ie. nodes in V \X that cannot be reached from X through a directed
path.

Definition 1. Let G be a DAG on vertices V = {X1, . . . , Xd}. Then P factorizes ac-
cording to G is there are conditional densities pi : Xi ×

∏
j∈Pa(Xi)

Xj → R+ such that

p(x1, . . . , xn) =

d∏
i=1

pi(xi | (xj)j∈Pa(Xi)) P − as. (1)

Definition 2. A bayesian network is a pair (G,P ) where G is a DAG and P factorizes
according to G.

Example 1. Consider the DAG X1 → X2 → X3. The distribution P with density
p(x1, x2, x3) = p1(x1)p2|1(x2 | x1)p3|2(x3 | x2) factorizes according to the DAG.

The graph G can be viewed in two very different ways:

1. as a data structure that provides the skeleton for representing a joint distribution
compactly in a factorized way;
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2. as a compact representation for a set of conditional independence assumptions about
a distribution.

As we will see, these two views are, in a strong sense, equivalent.
Given three subsets of variables X,Y ,Z ⊂ V we say that (X ⊥ Y | Z) holds in P if

X and Y are independent given Z; if X and Y are independent unconditionally, we say
(Y ⊥ Z) or (X ⊥ Y | ∅).

Definition 3. The set of all independence relations of P , written I(P ) is defined as the
set of relations (A ⊥ B | C) that hold in P .

As said in Item 2, we will see that the statement “P factorizes according to G” is
indeed equivalent to some statements about I(P ). More precisely, we shall see (eventually
under mild positivity conditions on p) that Definition 1 is equivalent to the following two
definitions:

Definition 4 (Local Markov property). P satisfies the local Markov property with respect
to G iff

Iloc(G) := {(Xi ⊥ NonDesc(Xi) | Pa(Xi)) : i = 1, . . . , d} ⊂ I(P ).

Definition 5 (Global Markov property). P satisfies the global Markov property with
respect to G iff

I(G) := {(X,Y | Z) : d-sepG(X, Y | Z)} ⊂ I(P ).

To fully understand the global Markov property, we must first define d-separation,
which will be addressed later; for now, we just point that the set I(G) is richer than the
set Iloc(G) and typically contains more independence relations.

1.1 Local Markov property and factorization

We wish to show that Iloc(G) ⊂ I(P ) (aka. local Markov property) iff P factorizes
according to G.

Theorem 1. The following statements are equivalent:

1. P factorizes according to G;

2. P satisfies the local Markov property relative to G (ie. Iloc(G) ⊂ I(P )).

Proof. (1) =⇒ (2) See [KF09, Theorem 3.2] or [Lau96, Section 3.2].
(2) =⇒ (1) [KF09, Theorem 3.1] or [Lau96, Section 3.2].

Example 2. Consider A → B → C, A → D E. Then (C ⊥ {A,D,E} | B) is a local
independence relation. On the other hand, if P factorizes according to this graph, then
(A ⊥ {C,E} | {B,D}) which is non-local (but we will is captured by the global Markov
property and d-separation).
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1.2 Global Markov property, d-separation

As we discussed, a graph structure G encodes a certain set of conditional independence
assumptions Iloc(G). Knowing only that a distribution P factorizes over G, we can
conclude that it satisfies the local Markov property. An immediate question is whether
there are other independencies that we can “read-off” directly from G. That is, are there
other independencies that hold for every distribution P that factorizes over G?

1.2.1 Basic building blocks of G and intuitions

Here we take inspiration from Brady Neal’s sections 3.5 and 3.6; our goal is to understand
the ideas motivating the definition of d-separation.

We use the example to define various motifs of interest, and give a hint on why they
are interesting.

Example 3 (Chains). A chain is a motif of the form X1 → X2 → X3. Consider the
graph on 3 vertices which is a chain and P factorizing according to it (equivalently P
satisfies the local Markov property relative to G). Usually X1 and X3 are dependent. But
if we look at X1, X3 | X2, we can see that

p123(x1, x2, x3) = p1(x1)p2|1(x2 | x1)p3|2(x3 | x2) (2)

so that X1, X3 | X2 = x2 admits the density

p13|2(x1, x2 | x2) =
p123(x1, x2, x3)

p2(x2)
(3)

=
p1(x1)p2|1(x2 | x1)

p2(x2)
p3|2(x3 | x2) (4)

= p13|2(x1, x3 | x2)p3|2(x3 | x2). (5)

In other words, (X1 ⊥ X3 | X2) holds in P . We shall say that X2 blocks the path between
X1 → X2 → X3.

Example 4 (Forks). A fork is a motif of the form X1 ← X2 → X3. It is easily seen that
forks and chains encodes the same type of conditional independencies.

Example 5 (Colliders and immoralities). A collider is a motif of the form X1 → X2 ←
X3, if there is no edge between X1 and X3, the motif is called an immorality1. Consider
the graph on 3 vertices which is an immorality and P factorizing according to it. Then,

1The term “immoral” is used humorously to indicate that these parents have not formed a relationship,
even though they share a child.
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we can see that X1 ⊥ X3 holds in P because

p13(x1, x3) =

∫
p123(x1, x2, x3)dµ2(x2) (6)

=

∫
p123(x1, x2, x3)dµ2(x2) (7)

=

∫
p1(x1)p3(x3)p2|13(x2 | x1, x3)dµ2(x2) (8)

= p1(x1)p3(x3)

∫
p2|13(x2 | x1, x3)dµ2(x2) (9)

= p1(x1)p3(x3). (10)

But, if we look at X1, X3 | X2, then

p13|2(x1, x3 | x2) =
p123(x1, x2, x3)

p2(x2)
= p1(x1)p2(x2)

p2|13(x2 | x1, x3)
p2(x2)

. (11)

So oddly-enough, conditional on X2 the variables X1 and X3 may becomes dependent if
X2 is really depending on (X1, X3). Brady Neal has the following “concrete” example:
An example is the easiest way to see why this is the case. Imagine that you’re out dating
men, and you notice that most of the nice men you meet are not very good-looking,
and most of the good-looking men you meet are jerks. It seems that you have to choose
between looks and kindness. In other words, it seems like kindness and looks are negatively
associated. However, what if I also told you that there is an important third variable here:
availability (whether men are already in a relationship or not)? And what if I told you that
a man’s availability is largely determined by their looks and kindness; if they are both good-
looking and kind, then they are in a relationship. The available men are the remaining
ones, the ones who are either not good-looking or not kind. You see an association
between looks and kindness because you’ve conditioned on a collider (availability). You’re
only looking at men who are not in a relationship. The structure of this example is
looks→ availability← kindness.

Example 6 (Descendant of immoralities). Similarly, conditionning on a descendants of
an immorality can induce association in between the parents of the collider. The intuition
is that if we learn something about a collider’s descendant, we usually also learn some-
thing about the collider itself because there is a direct causal path from the collider to its
descendants, and we know that nodes in a chain are eventually dependent.

What is important to retain here is that conditionning on the middle vertex of a chain
or a fork can “block” the flow of dependencies along it. In contrast, conditionning on the
middle vertex of an immorality can “unblock” the flow.

1.2.2 Paths, blocked paths, and d-separation

A (undirected) path is a sequence of distinct vertices (Xi1 , . . . , Xim), m ≥ 2, such that
for each k = 1, . . . ,m− 1 there is an edge Xik → Xik+1

or Xik ← Xik+1
.

Definition 6 (Blocked path). A (undirected) path (Xi1 , . . . , Xim) is blocked by a set of
vertices Z (not containing Xi1 nor Xim) if and only if:
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• (Xi1 , . . . , Xim) contains a chain Xik−1
→ Xik → Xik+1

or a fork Xik−1
← Xik → Xik

such that Xik ∈ Z, or

• (Xi1 , . . . , Xim) contains an immorality Xik−1
→ Xik ← Xik+1

such that Xik /∈ Z
and no descendant of Xik is in Z.

[draw picture! in particular compare the difference between immorality and a collider
X → Y ← Z with an edge between X and Z]

Definition 7 (d-separation). Let X, Y and Z be three disjoint subsets of vertices. X
and Y are d-separated by Z if every path between vertices of X and Y is blocked by Z.
We then write

d-sep(X,Y | Z).

1.2.3 The global Markov property

Recall I(G) := {(X,Y | Z) : d-sepG(X,Y | Z)} ⊂ I(P ).

Theorem 2. If p > 0 the following are equivalent:

1. P factorizes according to G;

2. P satifies the global Markov property relative to G (ie. I(G) ⊂ I(P )).

Proof. (1) =⇒ (2) [Lau96, Corollary 3.23].
(1) =⇒ (2) It is enough to observe that for every vertex Xi the sets {Xi} and

NonDesc(Xi) are d-separated by Pa(Xi). In other words the global Markov property
implies the local Markov property, which in turn implies (1) by Theorem 1.

So indeed, we have equivalence between factorization, local Markov, and global Markov
properties. This tells us that in a Bayesian network, the DAG gives indication about the
independence relations in I(G) (which might not be all of I(P ), see below).

To make it interesting, however, we shall ensure that the global Markov condition is
indeed stronger than the local Markov conditions. This can be seen because the parents
of a node always d-separate the node from its non-descendants.

Interestingly, there are efficient algorithms to find out if two sets are d-separated given
a third set [KF09, Algorithm 3.1]; so given the DAG we can immediately test if some
independence relation is in I(G).

1.3 Faithfulness, aka converse global Markov property

Definition 8 (Faithfulness). P is faithful to G if I(P ) ⊂ I(G).

It is interesting to wonder if factorization implies faithfulness. This is because since
factorization implies global Markov, then we would have that factorization implies I(G) =
I(P ) and be happy to have encoded in the DAG all the independence relations of P .
Unfortunately, factorization does not imply faithfulness, as seen in the examples below:

Example 7. Suppose X1 ⊥ X2. Yet, the law of (X1, X2) factorizes according to the graph
X1 → X2, but {X1} and {X2} are not d-separated, so we cannot read the independence
relation from the DAG X1 → X2.
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Example 8. See also [PJS17, Example 6.34].

This shows that in general we cannot read all the independence from the DAG in a
Bayesian network. But, faithfulness is an important concept since, factorization + faith-
fulness implies that I(G) = I(P ); in other words that d-separation permits to characterize
all independence relations.

1.4 Completeness of d-separation

The previous section shows that there can exist independence relations in I(P ) that we
cannot read from I(G); ie. some independence relations cannot be uncovered using d-
separation. It is natural to ask whether or not d-separation is the best we can do. Indeed
it is.

Theorem 3 (Completeness). If X and Y are not d-separated given Z in G, then there
exists a distribution P that factorizes according to G and in which X and Y are depen-
dent.

Proof. [KF09, Theorem 3.4]

We can view the completeness result as telling us that our definition of I(G) is the
maximal one. For any independence relation n that is not a consequence of d-separation
in G, we can always find a counterexample distribution P that factorizes over G.

1.5 Markov equivalence

Definition 9. Two graphs G1 and G2 are Markov equivalent if I(G1) = I(G2).

Example 9 (Chains and forks). X1 → X2 → X3, X1 ← X2 ← X3, and X1 ← X3 → X2

are Markov equivalent (notice the importance for causality: in the causal interpretation,
they are very different graphs since they don’t suppose the same cause-effects relations,
but probabilistically, they represent the same set of independence relations).

So the previous graphs are Markov equivalent, but they are not equivalent to the im-
morality X1 → X2 ← X3. This is because the immorality implies that X1 ⊥ X3 (see for
instance Example 5), but there are distributions P that factorizes according to chains or
forks in which X1 and X3 are dependent.

Theorem 4. Two DAG G1 and G2 are Markov equivalent if and only if they have the
same skeleton and the same set of immoralities.

Proof. [KF09, Section 3.3.4].

1.6 Minimality

Definition 10 (Minimality). If P factorizes according to G, but doesn’t factorize accord-
ing to any proper sugraph of G, then G is minimal.

This also can be understood has: if we were to remove any edges from the DAG, P
would factorizes according to the graph with the removed edges.

Theorem 5. For every P there exists a minimal DAG.
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Proof. Let us exhibit such a DAG. Starting point is to notice that we can always write

p(x1, . . . , xd) = p1(x1)p2|1(x2 | x1) . . . pd|1...(d−1)(xd | x1, . . . , xd−1).

Let Pa1 = ∅. For each j = 2, . . . , d find the minimal subset Paj of {1, . . . , j − 1} for
which

pj|1...(j−1)(Xj | X1, . . . Xj−1) = pj|Paj (Xj | (Xk)k∈Paj ) P -as.

Now build the graph on {X1, . . . , Xd} recursively starting from isolated vertex X1, then
adding X2 and edges X2 → X1 if Pa2 ̸= ∅, then adding X3 and edges X3 → Xk if
k ∈ Pa3, etc. Clearly this graph is a DAG, factors P , and is minimal.

Interestingly, the constructive proof of the previous theorem immediately shows that
minimal DAGs exist but not guaranteed to be unique. In fact, we have exhibited a DAG
using a specific ordering of the random variables, but choosing a different ordering can
lead to another minimal DAG. We illustrate this in the following example:

Example 10. Taken from [KF09, Sections 3.2.1 and 3.4.1 for details]. We consider a
set of random variables {I,D,G, S, L} (Intelligence, Difficulty, Grade, SAT, Letter), and
P whose density is given by

p(i, d, g, s, l) = pI(i)pD(d)pG|ID(g | i, d)pS|I(s | i)pL|G(l | g) (12)

The following are the minimal DAGs obtained from the algorithm used in the proof of
Theorem 5, using the ordering (I,D,G, S, L), (L, S,G, I,D), and (L,D, S, I,G).

Note that, perhaps surprisingly, the three minimal DAGs G1, G2, G3 in the previous
example are not Markov equivalent (they don’t have the same skeleton). There is nothing
contradictory here: this is because they encode different subsets of I(G1), I(G2), I(G3) ⊂
I(P ) but I(G1) ̸= I(G2) ̸= I(G3).

This also shows that minimality and faithfulness are distinct notions, since for P
faithful to G we must have I(G) = I(P ). Minimality is, however, a necessary condition
for faithfulness.

Proposition 1. If P is faithful and factorizes according to G, then G is minimal.

Proof. A sktech of proof is given in [PJS17, Proposition 6.35], but it relies on the premise
that two vertices with no edge between them can always be d-separated, which is still
unclear to me how to prove formally.
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2 Causal models, causes, effects, interventions

A “causal network” is a Bayesian network. The distinction between causal network
and Bayesian network is purely semantic, they are mathemtically the same object. The
distinction stem from the fact that in the causal network, the edges are interpreted as
representing a cause-effect relation. It is indeed the DAG that defines what is a cause
and an effect.

Definition 11 (Cause). In a causal network (G,P ), Xi is a cause of Xj if there is a
directed path from Xi to Xj. It is a direct cause if there is an edge Xi → Xj.

2.1 “Classical” causal modeling principles

What distinguish a causal network from a Bayesian network is the meaning of the arrows.
This implies that certain principles are assumed when modeling a causal networks. Those
principles are not mathematical, but rather philosophical.

Principle 1 (Reichenbach’s common cause principle). If two random variables X and Y
are statistically dependent, then either X causes Y , or Y causes X, or there exists a third
variable Z that causally influences both. Furthermore, this variable Z screens X and Y
from each other in the sense that X ⊥ Y | Z.

Principle 2 (Principle of independent mechanisms). The Principle of independent mech-
anisms posits that the mechanisms governing the generation of a system’s variables are
autonomous and do not influence each other. Specifically, the causal process that deter-
mines the effect of a variable X on another variable Y is independent of the processes
governing X itself. This principle implies that changes to one causal mechanism (e.g.,
intervening on X) should not alter the mechanisms governing the remaining variables.

The principle of independent mechanisms underpins many causal inference methods by
ensuring that the causal structure can be disentangled into distinct, modular components,
facilitating robust predictions and transferability across different contexts.

The following is an application example of the principle of independent mechanisms.

Example 11. Borrowed from [PJS17, Section 2.1]. Suppose we have estimated the joint
density p(a, t) of the altitude A and the average annual temperature T of a sample of
cities in some country. Consider the following ways of expressing p(a, t):

p(a, t) = p(a | t)p(t) = p(t | a)p(a). (13)

The first decomposition describes T and the conditional A | T . It corresponds to a factor-
ization of p(a, t) according to the graph T → A. The second decomposition corresponds
to a factorization according to A→ T . Can we decide which of the two structures is the
causal one (i.e., in which case would we be able to think of the arrow as causal)?

A first idea is to consider the effect of interventions. Imagine we could change the
altitude A of a city by some hypothetical mechanism that raises the grounds on which the
city is built. Suppose that we find that the average temperature decreases. Let us next
imagine that we devise another intervention experiment. This time, we do not change
the altitude, but instead we build a massive heating system around the city that raises
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the average temperature by a few degrees. Suppose we find that the altitude of the city is
unaffected.

Intervening on A has changed T , but intervening on T has not changed A. We would
thus reasonably prefer A→ T as a description of the causal structure.

Why do we find this description of the effect of interventions plausible, even though
the hypothetical intervention is hard or impossible to carry out in practice? If we change
the altitude A, then we assume that the physical mechanism p(t | a) responsible for pro-
ducing an average temperature is still in place and leads to a changed T . This would
hold true independent of the distribution from which we have sampled the cities, and thus
independent of p(a). Austrians may have founded their cities in locations subtly different
from those of the Swiss, but the mechanism p(t | a) would apply in both cases. If, on the
other hand, we change T , then we have a hard time thinking of p(a | t) as a mechanism
that is still in place — we probably do not believe that such a mechanism exists in the
first place. Given a set of different city distributions p(a, t), while we could write them all
as p(a | t)p(t), we would find that it is impossible to explain them all using an invariant
p(a | t).

Our intuition can be rephrased and postulated in two ways: If A → T is the correct
causal structure, then

(i) it is in principle possible to perform a localized intervention on A, in other words,
to change p(a) without changing p(t | a), and

(ii) p(a) and p(t | a) are autonomous, modular, or invariant mechanisms or objects in
the world.

2.2 Alternative causal modeling principles

Occam razor’s: minimum description lentgh!

2.3 Interventions

3 Causal effects

3.1 Nonparametric identifiability of causal effects

3.2 Parametric identifiability

4 SCM
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