
PhD offer

Efficient methods for spatio-temporal models estimation

Research units :
— Geostatistics team, Centre for Geosciences, Mines Paris, PSL
— MIA Paris Saclay, AgroParisTech/INRAE, Université Paris-Saclay

Supervisors : Lucia Clarotto (AgroParisTech), Nicolas Desassis and Thomas Romary (Mines Paris)
Duration : 3 years (starting autumn 2025)
Profile : The candidate should have a Master’s degree in engineering, applied mathematics, computer
science, statistics or data science, with courses in deep learning and/or spatial statistics. Proficient
scientific programming skills in Python are required, especially with Deep Learning frameworks (Py-
torch, Tensorflow or JAX).
Salary : ∼ 2200€/month (gross). The PhD is funded by the Geolearning chair.
Location : Centre for Geosciences, Mines Paris PSL (Fontainebleau) and/or MIA Paris Saclay, Cam-
pus Agro Paris-Saclay (Palaiseau)

The candidate will have an office in both locations, and benefit from the work environment of both
laboratories, with many PhD students & postdocs working on statistical modeling and machine learning
for geosciences and life sciences. Being part of the Geolearning chair will offer great opportunities to
discuss similar topics with the other students and researchers of the chair.

Context

Geostatistics aims at modeling natural phenomena that evolve in space and time and predicting
their behavior at unobserved locations, while quantifying the associated uncertainties. Most geostatisti-
cal models rely on Gaussian processes, as they allow for an easy prediction of the variable of interest at
unobserved times/locations together with the computation of the prediction variance. In this context,
the observations are assumed to be derived from a particular realization of a Gaussian process whose
parameters have to be estimated. The second order moment, that shapes the regularity of the process,
is classically chosen among parametric families of covariance functions. Their parameters are then es-
timated by maximizing the likelihood of the data. In the past few years, sophisticated spatio-temporal
models based on stochastic partial differential equations (SPDEs) have been proposed [3]. Built upon
a stochastic representation of physical processes such as advection and diffusion, they allow for a more
natural way to model spatio-temporal phenomena than standard spatio-temporal covariance models.
Their flexibility can also be enhanced when considering nonstationary extensions [7], that is when
diffusion and advection vary across space and time.

In practice, however, maximum likelihood estimation often becomes a computational bottleneck
as the amount of data increases — an issue that frequently arises in a spatio-temporal context. It is
therefore of major importance to develop scalable estimation techniques.
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The finite element discretization of the SPDEs yields a sparse precision matrix (inverse covariance)
for the spatio-temporal random field [9, 11]. This speeds up the computation of the likelihood but the
optimization problem remains hard, especially when considering non stationary models.

While SPDEs based models are hard to infer, they are fast to simulate from. Therefore, another way
of addressing the parameter estimation problem consists in working in a simulation based inference
framework [4]. This terms to simulate a large number of realizations of spatio-temporal random fields,
with known parameters, and to learn to solve the parameter estimation problem. This approach is
also called amortized inference [15] : while training the model is computationally intensive, this cost
is amortized by the efficiency of subsequent parameter inference. Two approaches have been proposed
within this framework : the first aims to train a neural network capable of estimating the parameters of
a random field, given a realization [6, 8, 12], while the second rather aims to obtain an approximation
of the likelihood, thus providing an easy-to-calculate proxy [13], that is subsequently maximized.

Goals

The PhD aims to tackle the computational challenges of the inference of complex spatio-temporal
models, exploring different approaches. Several possibilities exist to address this problem, among which
two are detailed below, but we are open to propositions formulated by the candidate.

Automatic Differentiation (AD) [1] has already been applied in the context of Gaussian Processes
in gradient-based optimization method for the estimation of parametric spatial covariance functions,
notably in the library GPyTorch [5]. A first objective could be to enable AD for optimizing the likelihood
of complex spatio-temporal models based on SPDEs, while exploring flexible parameterizations for
non-stationarity within this framework.

Another approach will be based on amortized inference. An initial internship in 2024 focused on
implementing an architecture similar to the one proposed in [12] based on graph neural networks
(GNNs) to infer parameters of stationary spatial fields. One goal of the PhD will be to generalize
the approach to a setting adapted to spatio-temporal data. The main challenges of this generalization
include designing a GNN architecture that accounts for spatio-temporal neighborhood structures and
handling the estimation of a significantly larger number of parameters.

Alternative approaches may also be considered, including hybrid models that integrate neural net-
works within Gaussian processes [14], such as Deep Gaussian Markov Fields [10], as well as variational
inference methods [2]. In addition, Bayesian inference will be investigated within this framework.

This work will benefit the spatial statistics community by enabling fast parameter estimation in
complex spatio-temporal models. A comprehensive comparison between the proposed methods and
state-of-the-art approaches will be conducted, focusing on computational complexity, estimation ac-
curacy, and scalability. Applications to real datasets in environmental sciences (e.g. solar radiation
for short term photovoltaic power prediction, wind speed for wind power generation, air pollutants
monitoring, . . .) will also be carried out.

How to apply ?

To apply or for any questions, please contact Lucia Clarotto (lucia.clarotto@agroparistech.fr), Tho-
mas Romary (thomas.romary@minesparis.psl.eu) and Nicolas Desassis (nicolas.desassis@minesparis.psl.eu).
Please send us your CV, cover letter and 2nd-year Master academic transcript.
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