
UNIVERSITÉ PARIS-SACLAY

École doctorale de mathématiques Hadamard (ED 574)

Laboratoire Mathématique et informatique appliquées,
UMR 518 AgroParisTech-INRAE

Mémoire présenté pour l’obtention du

Diplôme d’habilitation à diriger les recherches

Discipline : Mathématiques

par

Pierre BARBILLON

Statistical Contribution to Uncertainty Quantification
and the Analysis of Networks

Rapporteurs :

LILIANE BEL
CHARLES BOUVEYRON
DAVID HIGDON

Date de soutenance : 10 décembre 2020

Composition du jury :

CHRISTOPHE AMBROISE (Examinateur)
LILIANE BEL (Rapportrice)
CHARLES BOUVEYRON (Rapporteur)
DAVID HIGDON (Rapporteur)
JEAN-MICHEL MARIN (Examinateur)
CATHERINE MATIAS (Examinatrice)
OLIVIER ROUSTANT (Examinateur)





SCIENTIFIC PRODUCTION

PAPERS

Journal papers with methodological contribution

[JP1] P. Barbillon, L. Schwaller, S. Robin, A. Flachs, and G. D. Stone, Epidemiologic
network inference, Statistics and Computing, pp. 1–15, 2019.

[JP2] M. Carmassi, P. Barbillon, M. Keller, Éric Parent, and M. Chiodetti, Bayesian
calibration of a numerical code for prediction, Journal de la Société Française
de Statistique, accepted, 2019.

[JP3] M. Courbariaux, P. Barbillon, L. Perreault, and É. Parent, Post-processing
multiensemble temperature and precipitation forecasts through an exchangeable
normal-gamma model and its tobit extension, Journal of Agricultural, Biologi-
cal and Environmental Statistics, pp. 1–37, 2019.

[JP4] J. Ferrer-Savall, D. Franqueville, P. Barbillon, C. Benhamou, P. Durand, M.-
L. Taupin, H. Monod, and J.-L. Drouet, Sensitivity analysis of spatio-temporal
models describing nitrogen transfers, transformations and losses at the landscape
scale, Environmental Modelling & Software, 111:pp. 356 – 367, 2019.

[JP5] T. Tabouy, P. Barbillon, and J. Chiquet, Variational inference for stochastic
block models from sampled data, Journal of the American Statistical Associa-
tion, (accepted), 2019.

[JP6] G. Damblin, P. Barbillon, M. Keller, A. Pasanisi, and E. Parent, Adaptive nu-
merical designs for the calibration of computer codes, SIAM/ASA Journal on
Uncertainty Quantification, 6(1):pp. 151–179, 2018.

[JP7] P. Barbillon, C. Barthélémy, and A. Samson, Parameter estimation of com-
plex mixed models based on meta-model approach, Statistics and Computing,
27(4):pp. 1111–1128, 2017.

[JP8] P. Barbillon, S. Donnet, E. Lazega, and A. Bar-Hen, Stochastic block models for
multiplex networks: an application to a multilevel network of researchers, Jour-
nal of the Royal Statistical Society: Series A (Statistics in Society), 180(1):pp.
295–314, 2017.

[JP9] M. Courbariaux, P. Barbillon, and É. Parent, Water flow probabilistic predic-
tions based on a rainfall–runoff simulator: a two-regime model with variable
selection, Journal of Agricultural, Biological and Environmental Statistics,
22(2):pp. 194–219, 2017.

1



2 BIBLIOGRAPHY

[JP10] G. Damblin, M. Keller, P. Barbillon, A. Pasanisi, and É. Parent, Bayesian
model selection for the validation of computer codes, Quality and Reliability
Engineering International, 32(6):pp. 2043–2054, 2016.

[JP11] E. Lazega, A. Bar-Hen, P. Barbillon, and S. Donnet, Effects of competition on
collective learning in advice networks, Social Networks, 47:pp. 1–14, 2016.

[JP12] P. Barbillon, M. Thomas, I. Goldringer, F. Hospital, and S. Robin, Network
impact on persistence in a finite population dynamic diffusion model: application
to an emergent seed exchange network, Journal of theoretical biology, 365:pp.
365–376, 2015.

[JP13] M. Thomas, N. Verzelen, P. Barbillon, O. T. Coomes, S. Caillon, D. McKey,
M. Elias, E. Garine, C. Raimond, E. Dounias et al., Chapter six-a network-based
method to detect patterns of local crop biodiversity: Validation at the species and
infra-species levels, Advances in Ecological Research, 53:pp. 259–320, 2015.

[JP14] Y. Auffray, P. Barbillon, and J.-M. Marin, Bounding rare event probabilities in
computer experiments, Computational Statistics & Data Analysis, 80:pp. 153–
166, 2014.

[JP15] G. Damblin, M. Keller, A. Pasanisi, P. Barbillon, and E. Parent, Approche dé-
cisionnelle bayésienne pour estimer une courbe de fragilité, Journal de la Société
Française de Statistique, 155(3):pp. 78–103, 2014.

[JP16] Y. Auffray, P. Barbillon, and J.-M. Marin, Maximin design on non hypercube
domains and kernel interpolation, Statistics and Computing, 22(3):pp. 703–
712, 2012.

[JP17] Y. Auffray, P. Barbillon, and J.-M. Marin, Modèles réduits à partir d’expériences
numériques, Journal de la Société Française de Statistique, 152(1):pp. 89–102,
2011.

[JP18] P. Barbillon, G. Celeux, A. Grimaud, Y. Lefebvre, and É. De Rocquigny, Non-
linear methods for inverse statistical problems, Computational Statistics & Data
Analysis, 55(1):pp. 132–142, 2011.

Journal papers with consulting contribution

[JPC1] G. Carlin, C. Chaumontet, F. Blachier, P. Barbillon, N. Darcel, A. Blais,
C. Delteil, F. M. Guillin, S. Blat, E. M. Van der Beek, A. Kodde, D. Tomé,
and A.-M. Davila, Maternal high-protein diet during pregnancy modifies rat
offspring body weight and insulin signalling but not macronutrient preference
in adulthood, Nutrients, 11(1), 2019.

[JPC2] C. Lecarpentier, R. Barillot, E. Blanc, M. Abichou, I. Goldringer, P. Barbil-
lon, J. Enjalbert, and B. Andrieu, WALTer: a three-dimensional wheat model
to study competition for light through the prediction of tillering dynamics, An-
nals of botany, 123(6):pp. 961–975, 2019.

[JPC3] C. M. Bianchi, J.-F. Huneau, P. Barbillon, A. Lluch, M. Egnell, H. Fouillet,
E. O. Verger, and F. Mariotti, A clear trade-off exists between the theoretical
efficiency and acceptability of dietary changes that improve nutrient adequacy



BIBLIOGRAPHY 3

during early pregnancy in french women: Combined data from simulated
changes modeling and online assessment survey, PloS one, 13(4):p. e0194764,
2018.

[JPC4] S. Fromentin, O. Davidenko, P. Barbillon, G. Fromentin, D. Tomé, and
N. Darcel, Variation in food preferences elicited by low-protein status in hu-
mans, Appetite, 130:pp. 304–305, 2018.

[JPC5] M. Tharrey, F. Mariotti, A. Mashchak, P. Barbillon, M. Delattre, and G. E.
Fraser, Patterns of plant and animal protein intake are strongly associated with
cardiovascular mortality: the adventist health study-2 cohort, International
journal of epidemiology, 2018.

[JPC6] O. Sauzet, C. Cammas, P. Barbillon, M.-P. Étienne, and D. Montagne, Illu-
viation intensity and land use change: Quantification via micromorphological
analysis, Geoderma, 266:pp. 46 – 57, 2016.

[JPC7] J. Wencélius, M. Thomas, P. Barbillon, and E. Garine, Inter-household vari-
ability and its effects on seed circulation networks. a case study from northern
cameroon, Ecology and Society, 2016.

[JPC8] C. Desclée de Maredsous, R. Oozeer, P. Barbillon, T. Mary-Huard, C. Del-
teil, F. Blachier, D. Tomé, E. van der Beek, and A. Davila, High-protein ex-
posure during gestation or lactation or after weaning has a period-specific sig-
nature on rat pup weight, adiposity, food intake, and glucose homeostasis up to
6 weeks of age., The Journal of Nutrition, (5), 2015.

[JPC9] A. Marsset-Baglieri, G. Fromentin, F. Nau, G. Airinei, J. Piedcoq, D. Ré-
mond, P. Barbillon, R. Benamouzig, D. Tomé, and C. Gaudichon, The sati-
ating effects of eggs or cottage cheese are similar in healthy subjects despite dif-
ferences in postprandial kinetics, Appetite, 90:pp. 136 – 143, 2015.

PREPRINT

[P1] E. Baker, P. Barbillon, A. Fadikar, R. B. Gramacy, R. Herbei, D. Higdon,
J. Huang, L. R. Johnson, A. Mondal, B. Pires, J. Sacks, and V. Sokolov, Stochas-
tic simulators: An overview with opportunities, 2020.

[P2] S.-C. Chabert-Liddell, P. Barbillon, S. Donnet, and E. Lazega, A stochastic
block model for multilevel networks: Application to the sociology of organisations,
arXiv preprint arXiv:1910.10512, 2019.

[P3] K. Kamary, M. Keller, P. Barbillon, C. Goeury, and Éric Parent, Computer code
validation via mixture model estimation, 2019.

[P4] M. Keller, G. Damblin, A. Pasanisi, M. Schuman, P. Barbillon, F. Ruggeri, and
E. Parent, Validation of a computer code for the energy consumption of a building,
with application to optimal electric bill pricing, 2019.

[P5] T. Tabouy, P. Barbillon, and J. Chiquet, misssbm: An r package for handling
missing values in the stochastic block model, 2019.



4 BIBLIOGRAPHY

[P6] A. Bar-Hen, P. Barbillon, and S. Donnet, Block models for multipartite net-
works. applications in ecology and ethnobiology, 2018.

[P7] M. Carmassi, P. Barbillon, M. Chiodetti, M. Keller, and E. Parent, Calico: a r
package for bayesian calibration, 2018.

[P8] Y. Auffray and P. Barbillon, Conditionally positive definite kernels: theoretical
contribution, application to interpolation and approximation, 2009, tech. Re-
port.

IN PREPARATION

[IP1] P. Barbillon, A. Forte, and R. Paulo, Screening the discrepancy function, (in
preparation for submission).

[IP2] P. Barbillon and E. B. Pitman, Embedding discrepancy within the computer
model, (to be continued).

THESIS

[T1] P. Barbillon, Kernel interpolation methods for estimating expensive black box
functions, Ph.D. thesis, Université Paris Sud - Paris XI, 2010, URL https:

//tel.archives-ouvertes.fr/tel-00559502.

[T2] P. Barbillon, Modèles réduits à partir d’expériences numériques, Master’s thesis,
Université Paris Sud - Paris XI, 2007.

EDITORIAL

[E1] A. Pasanisi, P. Barbillon, B. Iooss, and H. Monod, Editorial of the special issue:
Computer experiments, uncertainty and sensitivity analysis, Journal de la Société
Française de Statistique, 158(1):pp. 1–3, 2017.

SOFTWARES

[R1] P. Barbillon and S. Donnet, Gremlin, https://github.com/

Demiperimetre/GREMLIN, 2019.

[R2] T. Tabouy, P. Barbillon, and J. Chiquet, misssbm, https://cran.r-project.
org/web/packages/missSBM/index.html, 2019.

https://tel.archives-ouvertes.fr/tel-00559502
https://tel.archives-ouvertes.fr/tel-00559502
https://github.com/Demiperimetre/GREMLIN
https://github.com/Demiperimetre/GREMLIN
https://cran.r-project.org/web/packages/missSBM/index.html
https://cran.r-project.org/web/packages/missSBM/index.html


Contents

Scientific production 1

1 Introduction 7

2 Uncertainty Quantification 13
2.1 Background on UQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Statistical Models and Notations . . . . . . . . . . . . . . . . . . . . 19

2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.1 Sensitivity Analysis and Screening in Complex High Dimen-

sional Simulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Inverse Problems and Calibration . . . . . . . . . . . . . . . . . . . 37
2.2.3 Accounting for Simulator Error . . . . . . . . . . . . . . . . . . . . 45
2.2.4 Post-processing probabilistic meteorological and hydrological

forecasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 Discrepancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.3.2 Stochastic Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.3.3 New Developments for Case Studies . . . . . . . . . . . . . . . . . 59
2.3.4 Designs of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Network Analyses 63
3.1 Notations and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Influence of the Network in Complex Processes . . . . . . . . . . . . . . . 67
3.3 Inference of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4 Analysis of Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4.1 Background on Block Models for Networks . . . . . . . . . . . . 74
3.4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.3 SBM inference from Sampled Data . . . . . . . . . . . . . . . . . . 85

3.5 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.5.1 Inferring Networks in a Dynamic Model . . . . . . . . . . . . . . 93
3.5.2 Sampled Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Bibliography 99

5





1INTRODUCTION

INTRODUCTION (VERSION FRANÇAISE)

Depuis mon doctorat, ma recherche s’est essentiellement concentrée sur des
phénomènes complexes. J’ai considéré deux types de complexité qui correspon-
dent aux deux chapitres suivants. Dans le chapitre 2, la complexité vient des modèles
numériques, appelés aussi simulateurs, avec lesquels nous travaillons. Ces simulateurs
permettent de faire des expériences dites numériques ou in silico. Elles remplacent les
expériences physiques lorsque celles-ci ne sont pas réalisables ou sont trop coûteuses.
Quand le phénomène modélisé est complexe, le simulateur doit prendre en compte de
nombreux processus afin de décrire avec le plus de détails possibles les mécanismes. Il
peut alors être coûteux en temps de calcul et dépendre d’un grand nombre de variables
d’entrées. Dans de nombreuses situations, le simulateur est seulement disponible sous
la forme d’une boîte noire, c’est-à-dire qu’il produit après un certain temps de calcul une
sortie pour une configuration donnée en entrée, la séquence de calcul transformant les
entrées en sortie est quant à elle inaccessible. La quantification des différentes sources
potentielles d’incertitudes est une question primordiale lorsque l’on utilise un tel sim-
ulateur. Ce thème de la quantification des incertitudes pour les simulateurs a émergé
récemment en statistique et est au cœur de certaines de mes contributions. Dans le
chapitre 3, la complexité résulte de la structure particulière des données étudiées. Les
données représentent les interactions entre des individus pouvant être des humains,
des espèces animales ou végétales, des gènes, etc. et sont sous la forme de réseaux qui
consistent en des ensembles de nœuds et d’arêtes reliant ces nœuds. Lorsque l’on mod-
élise un réseau, la structure de dépendance est une source majeure de complexité. De
plus, un réseau rend compte d’un type de relation spécifique entre certains individus
mais d’autres types d’interaction peuvent exister et ces mêmes individus peuvent aussi
interagir avec d’autres individus. Ce sont les réseaux multicouches qui se déclinent en
réseaux multipartites, multiplexes et multiniveaux. L’observation partielle des réseaux
due à un effort d’échantillonnage limité ajoute un niveau supplémentaire de complex-
ité. Ces deux sources de complexité dues à un échantillonnage partiel et des réseaux
multicouches sont au centre de mes contributions dans le domaine des réseaux.

Durant mon doctorat, j’ai commencé à travailler sur la quantification des incerti-
tudes dans les simulateurs. J’ai alors continué à contribuer à cette thématique en tant
que maître de conférence à AgroParisTech. J’ai notamment co-encadré avec É. Parent
les thèses de G. Damblin (soutenue en 2015), M. Courbariaux (soutenue en 2017), M.
Carmassi (soutenue en 2018) et je co-encadre actuellement avec J. Enjalbert la thèse de
E. Blanc (soutenance prévue fin 2020). J’ai également collaboré avec deux collègues
en post-doctorat J. Ferrer-Savall (2015-2016) and K. Kamary (2017). Le domaine de la
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8 CHAPTER 1. INTRODUCTION

quantification d’incertitudes est riche en collaborations potentielles puisque les simu-
lateurs sont de plus en plus utilisés dans beaucoup de domaines scientifiques et sont très
employés dans des applications industrielles. Les trois thèses soutenues étaient en col-
laboration avec trois département différents d’EDF (Électricité de France), respective-
ment : “modélisations des risques et des incertitudes”, “production d’hydro-électricité”
et “production d’électricité photovoltaïque”. La thèse de M. Courbariaux était égale-
ment en collaboration avec avec Hydro-Québec, un producteur d’énergie québécois.
Le post-doctorat de K. Kamary était aussi en collaboration avec le département “mod-
élisations des risques et des incertitudes” d’EDF. Ces collaborations avaient pour but
de rendre compte des incertitudes dans la production d’énergie et d’évaluer la sécurité
des centrales de production d’énergie. Le post-doctorat de J. Ferrer-Savall était en col-
laboration avec J.-L. Drouet de l’unité de recherche ECOSYS de l’INRA. Le sujet était
la cascade de l’azote dans les territoires. La thèse d’E. Blanc est en collaboration avec
l’unité de recherche du Moulon spécialisée en génétique végétale. Le but est d’étudier
la croissante des plantes cultivées à l’aide d’un simulateur. Dans la communauté scien-
tifique, la quantification d’incertitude dans les simulateurs est d’intérêt majeur comme
le montre la formation de nombreux groupes de recherche réunissant mathématiciens
appliqués, informaticiens des mondes académiques et industriels. Ces groupes ont été
formés ces vingt dernières années : MASCOT NUM en France, MUCM au Royaume-
Uni et un groupe activity group on UQ de la société SIAM (Society for Industrial and
Applied Mathematics) aux États-Unis. Une revue intitulée Journal on UQ co-édité par
l’ASA (American Statistical Association) et SIAM est même dédiée à cette thématique.
Un numéro spécial [E1] du journal de la SFdS (Société Française de Statistique) portant
sur cette thématique a également été publié en 2017. Des conférences internationales
fréquentes ou des sessions spéciales dans les conférences internationales portent sur la
quantification d’incertitude. Par exemple, SAMO (Sensitivity Analysis of Model Out-
put), UQ16. L’institut de recherche SAMSI en Caroline du Nord aux États-Unis a
organisé durant l’année universitaire 2018-2019 un programme de recherche MUMS
(Model Uncertainty: Mathematical and Statistical) qui a réuni des chercheurs de tout
horizon dans le domaine de la quantification d’incertitude. L’institut a accueilli des
chercheurs visiteurs tout au long de l’année et a organisé des conférences au cours de
l’année. J’ai eu la chance de participer à ce programme grâce au soutien financier d’une
bourse Agreenskills+ pour un séjour à l’étranger.

J’ai commencé à travailler sur l’analyse statistique des réseaux en prenant part à
un projet de recherche portant sur l’impact d’un réseau en tant qu’entrée d’un simu-
lateur dynamique. Ce projet était en lien avec le post-doctorat de M. Thomas (2012)
et la question de recherche était l’impact de la structuration sociale entre fermiers sur
la biodiversité cultivée. Ces travaux continuent grâce au groupe de recherche MIRES
(Méthodes Interdisciplinaires sur les Réseaux d’Échanges de Semences). Il a été financé
en 2013 et en 2014 par le Réseau National des Systèmes Complexes et depuis 2015 par le
département MIA de l’INRA. Il réunit des ethnobiologistes, des statisticiens, des géo-
graphes, des généticiens et des écologues. Je me suis ensuite intéressé aux différentes
topologies de réseaux ce qui m’a apporté de nouvelles opportunités de travailler en
particulier sur les topologies dérivant de modèles à blocs, ces blocs représentant des
groupes de nœuds. Avec mes collaborateurs, nous avons ensuite étendu les modèles
à blocs à des réseaux multicouches et avons proposé des méthodes d’inférence adap-
tées. Avec S. Donnet, nous co-encadrons S.-C. Chabert-Liddell sur ces questions (sou-
tenance prévue fin 2021). Le traitement de l’inférence de modèles à blocs en présence
de données manquantes dans les réseaux d’interaction a été traité dans la thèse de T.

http://www.gdr-mascotnum.fr/
http://www.mucm.ac.uk/
https://www.siam.org/activity/uq/
http://www.siam.org/journals/juq.php
http://journal-sfds.fr/index.php/J-SFdS/issue/view/66
http://samo2016.univ-reunion.fr/
https://www.siam.org/meetings/uq16/
https://sites.google.com/site/miresssna/home
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Tabouy (soutenue en 2019) que j’ai co-encadrée avec J. Chiquet. De plus, l’inférence
d’un réseau en tant que paramètre d’un simulateur dynamique a été l’une de mes contri-
butions. L’analyse des réseaux est intéressante pour de nombreuses applications notam-
ment en sociologie et en écologie. En sociologie, nous avons collaboré avec E. Lazega
qui s’intéresse à la sociologie des organisations et qui a pour but de déterminer com-
ment les relations entre les individus et les relations entre les entreprises s’entremêlent.
En écologie, nous collaborons avec des écologues principalement grâce à un finance-
ment ANR Econet qui a commencé en 2019. Le but de ce projet est de développer des
méthodes statistiques afin de répondre spécifiquement à l’analyse des différents types de
réseaux écologiques (réseaux trophiques, réseaux hôtes-parasites, plantes-pollinisateurs,
plantes-champignons) et de comprendre les mécanismes qui guident les interactions en-
tre espèces.

De nombreux modèles dans mes contributions, autant dans le chapitre 2 que dans le
chapitre 3 comportent des variables latentes. J’utilise de tels modèles dans le chapitre 2
soit pour décrire grâce à la variable latente les différents régimes d’erreur du simulateur
ou pour modéliser des effets individus dans un modèle à effets mixtes. Les variables la-
tentes dans le chapitre 3 correspondent aux regroupements en blocs qui structurent les
interactions dans les réseaux. J’ai utilisé des techniques d’inférence qui sont soit bayési-
enne, soit qui reposent sur un algorithme type Espérance-Maximisation (EM) ce qui est
assez proche dans le domaine des modèles à variables latentes. Cela peut nécessiter de
simuler les variables latentes (dans un cadre bayésien ou lorsque l’on utilise des versions
stochastiques de l’algorithme EM) et les paramètres à estimer (dans le cadre bayésien).
Pour ce faire, j’utilise des méthodes MCMC notamment les algorithmes de Gibbs et de
Metropolis-Hastings. En alternative aux versions stochastiques de l’algorithme EM,
j’utilise une version variationnelle de l’algorithme EM dans le chapitre 3 où le calcul
exact de l’étape E est prohibitif et est remplacé par une approximation variationnelle
qui rend les calculs réalisables. En plus de ces techniques, le cœur des outils utilisés dans
le chapitre 2 repose sur la théorie des processus gaussiens qui permettent d’obtenir des
émulateurs du simulateur.

Les deux chapitres suivants posent un contexte introductif nécessaire pour présen-
ter mes contributions. Bien qu’écrits en anglais, ils présentent un résumé long en
français. Dans le chapitre 2, les contributions portent sur des méthodes d’analyse de
sensibilité de simulateurs de grande dimension, sur le calage et la validation de sim-
ulateurs et sur la modélisation du régime d’erreur du simulateur. Je présente ensuite
mes perspectives poursuivant les travaux menés notamment sur la modélisation des
erreurs de simulateurs ou s’ouvrant vers de nouvelles thématiques comme les simula-
teurs stochastiques. Dans le chapitre 3, l’organisation est quelque peu différente. Les
notations et le vocabulaire communs sont tout d’abord présentés. Ensuite, les contri-
butions sont séparées en trois parties thématiques : influence du réseau dans un modèle
complexe, inférence d’un réseau de contact et modélisation par des modèles à blocs de
réseaux d’interaction. Elles sont exposées avec un contexte introductif propre suivi des
éléments principaux de la ou des contributions correspondantes. Finalement, les per-
spectives de ce chapitre sont regroupées dans une partie finale. Plusieurs d’entre elles
sont notamment liées à des questions propres aux réseaux écologiques d’interaction.

https://anr.fr/Projet-ANR-18-CE02-0010
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INTRODUCTION (ENGLISH VERSION)

Since obtaining my Ph. D., my research contributions have been mainly focused on
complex phenomena. I have considered two kinds of complexity which correspond
to the following two chapters. In Chapter 2, complexity comes from the computer
models a.k.a. simulators that we are dealing with. These simulators are used to run nu-
merical or computer experiments. They replace field experiments when unfeasible or
too costly. When the modeled phenomenon is complex, the simulator has to account
for many processes to be accurate. It may then become time consuming and depend on
many input variables. In most situations, the simulator is only available as a black box
i.e. it provides an output for a given input configuration after a certain amount of time
but the detailed sequence of computations transforming the inputs into the output is
unreachable. It is often necessary to assess the different sources of uncertainties when
working with such simulators. This is the aim of the area of Statistics called “Uncer-
tainty Quantification” in which I have several contributions. In Chapter 3, complexity
arises as a result of the particular structure of the data at hand. The data represents in-
teractions between individuals (humans, species, gene, etc.) and are given as networks
which consist of sets of nodes and sets of edges linking these nodes. When modeling
a network, the structure of dependencies is an important source of complexity. More-
over, a network accounts for some specific relations between specific individuals but
other kinds of interactions may exist and the same individuals may be implied in other
interactions with other individuals. This then results in multilayer networks which
are of different types: multiplex, multipartite, multilevel to name but a few. The par-
tial observation due to a limited sampling effort adds another layer of complexity. My
main contributions in the network area deal with this complexity induced by limited
sampling and multilayer networks.

My Ph.D. was concerned with some aspects of UQ. I then continue to contribute to
this area as an assistant professor at AgroParisTech. I co-supervised with É. Parent the
Ph.D. theses of G. Damblin (defended in 2015), M. Courbariaux (defended in 2017), M.
Carmassi (defended in 2018) and I co-supervise with J. Enjalbert the Ph. D. thesis of E.
Blanc (defense planned in late 2020). I also collaborated with two post-doctoral fellows
J. Ferrer-Savall (2015-2016) and K. Kamary (2017). This area of research is rich in poten-
tial collaboration since the use of simulator is more and more popular in many scientific
domains and is widespread in many industrial applications. The three defended Ph. D.
theses were carried out in collaboration with three different departments of EDF (Élec-
tricité de France), respectively: “uncertainties and risks modeling”, “hydro-electricity
production” and “photovoltaic electricity production”. The Ph. D. thesis of M. Cour-
bariaux was also in collaboration with Hydro-Québec, a Québec energy supplier. The
post-doctoral fellowship of K. Kamary is also in collaboration with the department
“uncertainties and risks modeling” of EDF. These collaboration with EDF were ded-
icated to quantify the uncertainties in energy production and to assess the safety of
powerplants. The post-doctoral fellowship of J. Ferrer-Savall was achieved in collab-
oration with J.-L. Drouet from the INRA ECOSYS research unit and was concerned
with the cascade of nitrogen in the landscape. The Ph. Thesis of E. Blanc is in collabo-
ration with Le Moulon, a research unit in plant genetics. The goal is to study the plant
growth through a simulator. In the scientific community, uncertainty quantification in
simulators is of major interest as demonstrated by the formation of numerous research
groups aggregating applied mathematicians, computer scientist, statisticians from aca-
demic and industrial teams. These groups were formed in the last decades: MASCOT

http://www.gdr-mascotnum.fr/
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NUM in France, MUCM in the UK, and SIAM (Society for Industrial and Applied
Mathematics) activity group on UQ in the USA. A joint ASA (American Statistical
Association) /SIAM Journal on UQ is devoted to papers in this field. A special issue
[E1] of the Journal of the SFdS (Société Française de Statistique) was also published in
2017 on this subject. Regular international conferences or special sessions in interna-
tional conferences on UQ are numerous and popular. To name a few: SAMO (Sensitiv-
ity Analysis of Model Output, UQ16. SAMSI a research institute in North Carolina,
USA organized during the academic year 2018-2019 a program entitled MUMS (Model
Uncertainty: Mathematical and Statistical) which gathered international researchers in
the field of UQ. The institute hosted research visitors throughout the year and orga-
nized several research workshops along the year. I was part of this program thanks to
the financial support of an Agreenskills+ outgoing fellowship.

I began to work on the statistical analysis of networks by being part of a research
project where the question was to study the impact of a network as an input of a dy-
namic simulator. This project took place during the post-doctoral fellowship of M.
Thomas (2012) and was concerned with the impact of the social structure of farm-
ers on the cultivated biodiversity. These works keep going on through the research
group MIRES (Méthodes Interdisciplinaires sur les Réseaux d’Échanges de Semences).
It was funded in 2013 and 2014 by the Réseau National des Systèmes Complexes and
since 2015 by the INRA department MIA. It brings together ethnobiologists, statisti-
cians, geographers, geneticists and ecologists. I then focused on the different topologies
of networks. This brought new opportunities to work on the inference of particular
topologies based on a blockmodeling of the network (clustering of nodes). With my
collaborators, we then extended the blockmodels to multilayer networks and proposed
a dedicated inference method. With S. Donnet, we supervise S.-C. Chabert-Liddell on
these questions (defense due in late 2021). The question of dealing with missing data
in the inference of blockmodels was central in the Ph. Thesis of T. Tabouy (defended
in 2019) which I supervised with J. Chiquet. Furthermore, the question of inferring
the network which serves as an input of a dynamic simulator was investigated. The
analysis of network is interesting for many applications including sociology and ecol-
ogy. In sociology, we collaborated with E. Lazega who focuses on the sociology of
organizations and aims to determine how relations between individuals and between
organizations are intertwined. In ecology, we are collaborating with ecologists mainly
through an ANR grant named Econet which started in 2019. The goal is to develop
statistical methods specifically designed for analyzing different types of ecological net-
works (food webs, host-parasite, plant-pollinator, plant-fungus networks). This will
allow us to understand the mechanisms that determine species interactions.

Many models in my contributions, as well in Chapter 2 as in Chapter 3, include
latent variables. I resort to latent variable modeling in Chapter 2 either to describe
through the latent variables different error regimes for the simulator or to represent
individual effect in mixed effect model. The latent variables in Chapter 3 correspond
to the block clustering which shapes the interactions in networks. The inference tech-
niques I used are mainly either Bayesian or rely on Expectation-Maximization (EM)
algorithm. Technically, the algorithms are quite close in the area of latent variable
models. They may require to simulate latent variables (in a Bayesian framework or
when using a stochastic version of the EM algorithm) and parameters to be estimated
(in a Bayesian framework). I used MCMC algorithms including Gibbs and Metropolis-
Hastings algorithms. As an alternative to stochastic versions of the EM algorithm, I
used variational version of the EM in Chapter 3 where the exact computation of the E

http://www.gdr-mascotnum.fr/
http://www.gdr-mascotnum.fr/
http://www.mucm.ac.uk/
https://www.siam.org/activity/uq/
http://www.siam.org/journals/juq.php
http://journal-sfds.fr/index.php/J-SFdS/issue/view/66
http://samo2016.univ-reunion.fr/
https://www.siam.org/meetings/uq16/
https://sites.google.com/site/miresssna/home
https://anr.fr/Projet-ANR-18-CE02-0010
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step is replaced with a variational approximation making the computations tractable.
In addition to these techniques, the core of the techniques in Chapter 2 are Gaussian
processes which produce surrogates (a.k.a. metamodels) of simulators.

The following two chapters provide an introductory context necessary for present-
ing my contributions. In the chapter 2, the contributions relate to methods of sensi-
tivity analysis of simulators in high dimension, to the calibration and validation of
simulators and to the modeling of the simulator error regime. Then, I present my per-
spectives, either continuing the work carried out in particular on the modeling of simu-
lator errors or opening up to new themes such as stochastic simulators. In the chapter
3, the organization is somewhat different. The common notations and terminology
are first presented. Then, the contributions separated into three parts: influence of
the network in a complex model, inference of a contact network and blockmodeling
interaction networks, are exposed with their own introductory context followed by
the main elements of the contribution(s) in question. Finally, the perspectives of this
chapter are gathered in a final part. Several perspectives are notably linked to questions
specific to ecological networks of interaction.



2UNCERTAINTY QUANTIFICATION

RÉSUMÉ DU CHAPITRE EN FRANÇAIS

Les simulateurs sont des implémentations de modèles mathématiques de phénomènes
réels complexes. Ils ont une importance cruciale dans de nombreux champs scien-
tifiques. Un appel à un simulateur (une simulation) pour une configuration d’entrées
choisie est appelé une expérience numérique ou in silico. Ces expériences remplacent
les expériences de terrain ou en laboratoire lorsque celles-ci sont trop coûteuses en
ressources ou ne sont pas réalisables. La quantification d’incertitude s’attache à mod-
éliser et prendre en compte les différentes sources d’incertitude lorsque l’on travaille
avec un simulateur. L’incertitude entache certains paramètres d’entrées du simulateur
qui doivent être choisis par l’utilisateur avant de lancer une simulation. En confrontant
les sorties du simulateur à quelques expériences de terrain, il est possible de réduire cette
incertitude. Cette tâche s’appelle le calage du simulateur. Cette confrontation permet
également de mesurer l’écart entre le simulateur et le phénomène réel qui est appelé
la discrépance. Quantifier cette discrépance permet de valider ou non le simulateur,
c’est-à-dire décider si le simulateur est assez précis au regard de son utilisation prévue.
Les simulateurs sont généralement des fonctions boîte-noire dans le sens où ils ne sont
pas disponibles sous forme analytique. Ils sont seulement disponibles comme un code
exécutable renvoyant une sortie pour une entrée. Ce code est le plus souvent coûteux
en temps de calcul, un appel pouvant durer plusieurs heures voire des jours. Il est alors
souvent nécessaire d’employer des techniques de réduction de modèle afin de constru-
ire un émulateur qui sera une version rapide et approchée du simulateur. Cet émulateur
est construit à partir d’un nombre limité d’appels bien choisis au simulateur. Travailler
avec un émulateur ajoute alors une couche d’incertitude supplémentaire.

Mes contributions dans ce domaine peuvent être regroupées en quatre parties prin-
cipales : i) l’analyse de sensibilité pour les simulateurs en grande dimension, ii) les
problèmes inverses dont le calage, iii) l’erreur de simulateur et iv) le post-traitement
de prévisions hydrologiques et météorologiques.

L’analyse de sensibilité a pour but d’identifier quelles entrées du simulateur ont
le plus fort impact sur ses sorties. Cela permet de mieux comprendre le phénomène
modélisé ainsi que de simplifier l’utilisation du simulateur en limitant la dimension
des entrées. Bien que les méthodes d’analyse de sensibilité utilisées soient simples, la
difficulté a été de gérer plusieurs types d’entrées qui sont spatialisées et temporelles.
Les sorties sont également spatialisées et/ou dynamiques. Nous avons proposé dans
[JP4] des méthodes de visualisation efficaces afin de résumer une grande quantité de
sorties. J’ai principalement travaillé avec deux simulateurs, l’un modélisant la diffusion
de l’azote dans un territoire agricole et l’autre modélisant la croissance de plants de blé.

13
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Les problèmes inverses ont pour but d’estimer certaines entrées, appelées
paramètres, du simulateur à partir d’expériences de terrain correspondant à des sorties
du simulateur. L’estimation de ces paramètres s’appellent le calage. Dans [JP6], nous
avons proposé un plan d’expérience numérique séquentiel adapté à l’objectif de calage.
Dans le cadre d’un modèle mixte impliquant le simulateur, le paramètre d’entrée
est supposé être tiré aléatoirement et indépendamment pour chaque individu d’une
population. Le but est alors d’estimer les paramètres de la loi de la population. Dans
[JP7], nous avons montré comment estimer ces paramètres tout en tenant compte de
l’incertitude due à l’utilisation d’un émulateur à la place d’un simulateur trop coûteux.

Dans [JP10, P3], nous proposons de traiter la question de la validation d’un simula-
teur comme un problème de choix de modèle entre un modèle intégrant seulement un
bruit d’observation contre un modèle comportant également un terme de discrépance.

Les articles [JP3] et [JP9] se concentrent sur le post-traitement de prévisions hy-
drologiques et météorologiques. Des simulateurs sont utilisés pour proposer des prévi-
sions d’ensemble qui ont souvent besoin d’être post-traitées afin d’être utilisées en tant
que prévision probabiliste. Nous avons proposé de les post-traiter en les intégrant dans
un modèle statistique. Nous avons de plus proposé un modèle statistique avec deux
régimes d’erreur pour post-traiter les sorties d’un simulateur pluie-débit.

Dans mes perspectives, la poursuite des travaux concernant la discrépance du sim-
ulateur s’articule autour de trois axes. La détection des variables auxquelles la dis-
crépance est la plus sensible grâce à une sélection de modèle par calcul du facteur de
Bayes devrait permettre de mieux comprendre les erreurs du simulateur. Des tests entre
plusieurs modèles de discrépance offrent également une possibilité de mieux compren-
dre l’erreur du simulateur et d’améliorer sa prise en compte dans des prédictions. Enfin,
lorsque le simulateur dérive d’équations différentielles, il est possible d’incorporer di-
rectement un terme de discrépance dans ces équations. Cela pourrait permettre une
meilleure prise en compte des incertitudes, directement dans les parties incertaines du
simulateur plutôt que comme un terme externe correcteur.

Bien que la plupart des simulateurs soient déterministes, les simulateurs stochas-
tiques sont de plus en plus populaires. Les techniques usuelles de quantification des
incertitudes doivent être alors étendues aux simulateurs stochastiques ce qui représente
des difficultés supplémentaires. Avec des collègues, nous avons écrit un article de revue
identifiant ce qui est fait et ce qui reste à faire [P1] dans ce domaine.

Les deux simulateurs pour lesquels nous avons effectué une analyse de sensibilité
sont sources de défis méthodologiques majeurs qui donnent lieu à des perspectives pour
des travaux futurs. Le simulateur modélisant la diffusion de l’azote dans le territoire est
construit comme un couplage dynamique de quatre simulateurs. Émuler un tel simula-
teur demande de développer une méthodologie dédiée qui rendra possible l’exploration
plus poussée de celui-ci. Pour le simulateur modélisant la croissance de plants de blé, la
question est de réussir à construire une analyse de sensibilité pour un mélange de deux
variétés de blés présentant des traits phénotypiques différents. Cela demande de pro-
poser un plan de simulation adapté pour mesurer comment ce mélange peut conduire
à de meilleurs rendements.

La question du choix des plans d’expériences numériques reste une question impor-
tante qui doit toujours être reliée au(x) objectif(s) visé(s). Notamment dans le contexte
de la validation du simulateur, trouver les expériences numériques qui permettraient de
détecter où le simulateur présente des écarts plus importants à la réalité permettrait de
déterminer précisément un domaine de validité du simulateur dans un premier temps
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puis à l’améliorer dans un deuxième temps. Cette question se pose aussi pour le choix
des expériences de terrain quand un choix est possible.
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Since most of the contributions share a common background, the first section is
devoted to the exposition of Uncertainty Quantification. This section deals with the
general techniques and goals in this field. It also introduces some specific terminology.
Then, the contributions and the perspectives are presented.

2.1 BACKGROUND ON UQ

2.1.1 General Overview

Simulators (a.k.a. computer models, mechanistic models, etc.) are mathematical mod-
els of complex real-world processes. They are a crucial ingredient in most fields of
science, engineering, medicine and business. Running the simulator at a chosen set of
inputs on a computer is sometimes named a numerical experiment or an experiment in
silico. These experiments replace wet lab experiments or physical experiments when
they are too costly or impracticable. For instance, simulators in biology/medicine de-
scribe load decrease in HIV patients or tumor growth [175, 78, 106, 141]; in pharma-
cokinetics, compartment models are used to simulate the absorption and elimination
of a drug dose given to a patient [JP7]; in agronomy, the coupling of hydrological, at-
mospheric, land use and agricultural simulators models the cascade of nitrogen at the
landscape level [60, JP4]; in nuclear safety, simulators allow engineers to assess the reli-
ability of a nuclear reactor in specific working conditions and its acess to cooling source
of water [P3, 27]; in energy production, simulators help to predict the production of a
power plant [JP10, JP2]; in meteorology, simulators provide forecasts of future mete-
orological conditions [JP9, JP3]; in natural hazard quantification, hazard maps are de-
rived from simulators to inform public policies [155, 160]; in socioeconomics land use
and transportation integrated models help to evaluate planning policies and develop-
ment scenarios [71]. In the last decades, the growth in computing power increased the
usage of simulators and they were devoted to explore larger and larger problems. From
a statistical point of view, the main issue when working with simulators is uncertainty
quantification (UQ). Uncertainties are present at different levels of the simulators. Un-
certainties may affect the inputs of the simulator. Some inputs of the simulator are
called parameters and are not precisely known. Generally, only a coarse information
is available such as a reference value and lower and upper bounds. This uncertainty on
input parameters can be modeled as a probability distribution function in a Bayesian
framework. In spite of the complexity of the simulator, it can suffer from a discrep-
ancy with real experiments. This discrepancy should be carefully evaluated to assess
or not the validity of replacing physical experiments with simulator runs. Moreover,
the simulator is time consuming since a call may take hours or even days. In this case,
model reduction techniques are necessary to explore the set of inputs and to study its
behavior. This limited time budget leads to an additional source of uncertainty.

The uncertainty quantification task consists in taking into account all these sources
of variability and to determine to what extent the simulator is reliable to describe the
real-world process. The goal is also to reduce these uncertainties by using all available
data which are from heterogeneous sources. Statisticians have proposed Sensitivity
Analysis (SA) [146]methods or screening techniques [111] to determine which inputs
have the most impact on the outputs of the simulator. By doing so, the input dimen-
sion can be reduced to the space of the influent input variables. When the simulator
is too costly in computation time, model reduction techniques (a.k.a. emulation[149])
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which incorporate also information on the approximation quality are proposed. These
techniques launch a limited number of runs of the simulator to build a fast approxima-
tion of the simulator over the whole set of inputs. Choosing the designs of numerical
experiments, i.e. input configurations where the simulator is run, is also a key ques-
tion for statisticians. Since the computational budget is limited, this design has to be
chosen carefully with respect to the intended goal. A general requirement for the de-
sign of numerical experiment is to be space filling [62, 47, JP16]. Since the emulators
such as GPE are interpolators, their performances depend on the coverage of the input
space by the design of experiments. The designs can be enriched sequentially when a
specific goal is fixed such as optimizing the simulator [89] or computing a probability
of failure corresponding to the exceedance of a threshold by the output of the simula-
tor [9]. When field experiments (experiments generated from the real-world process)
are available, the unknown parameters of the simulators can be calibrated. The simu-
lator is to be embedded into a statistical model and the calibration is dealt with as an
inference problem [93]. The simulator running time, the large dimension of inputs
and outputs and the limited number of field data make the calibration a challenging
problem. Eventually, the simulator has to be validated which means that it has to be
demonstrated that it sufficiently well represents the real-world process. Validation task
is not simply answering the naive question: “Can the simulator represent adequately
the reality ?” It should be context dependent. After assessing the uncertainty affect-
ing the simulator, the simulator is declared valid or not regarding its intended uses [8].
These steps are summarized in Figure 2.1. After the problem specification where the
experts identify the inputs of the simulator: input variables x and parameters θ with
a corresponding probability distribution representing the uncertainties (Step 1), a sen-
sitivity analysis or a screening technique is run (Step 2) in order to focus only on the
most influential inputs (input variables and/or parameters) in the following steps. If
running the simulator f is time consuming, an emulator is to be constructed from a
design of numerical experiments (Step 2bis). From a cheap simulator or from an emu-
lator, optimization, visualization and computation of exceedance probabilities [JP14]
can be performed. Calibration and validation tasks (Steps 3 and 4) are based on the
simulator or its emulator and on additional field data (not to be confounded with nu-
merical experiments which consists of runs of the simulator). Calibration consists in
reducing the uncertainties on input parameters θ of the simulator and validation con-
sists in determining whether or not the simulator is sufficiently close to the real-world
process f R.

Figure 2.1 omits some possible feedback loops. These feedback loops intervene
when the design is built sequentially as mentioned above for optimization or estima-
tion of a failure probability. Sequential numerical design of numerical experiments
may also enhance the calibration [JP6].

On the top of this general presentation, some particular features of simulators
should be identified and properly taken into account since they need specific devel-
opments. The simulator is said to be deterministic or stochastic whether two runs
of the simulator at the same inputs provide the same outputs or not. Stochastic-
ity may be the result of two typical cases. First, stochastic approximation schemes
such as Monte Carlo computations or more sophisticated schemes [84] are used in
the computations of the simulator and lead to different output for different ran-
dom seeds. Second, the simulators coming from fields such as biology, ecology, epi-
demiology, socioeconomics embrace a model for stochasticity. Agent-Based Models
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Figure 2.1 – Global approach in Uncertainty quantification

(ABM) [70] (see https://www.comses.net/ and https://ccl.northwestern.edu/

netlogo/references.shtml for online platforms dedicated to ABMs) also known in
ecology as Individual-Based Models (IBMs) are a particular case of this kind of model
where individuals (agent) are modeled in interaction with others. Since the possible
interactions are complex, they are often modeled as stochastic. For instance, in epi-
demiology, the spread of a disease can be modeled as an ABM with an SIS/SIR (Suscep-
tible Infected Susceptible / Recovered) model. Individuals have random interactions
with one another and may or may not be contaminated by an infected ones. In this
case, the whole distribution of the output for a given input configuration is of interest.
Indeed, the quantile of the spread of the epidemics could help to assess the level of risk.
Conversely, when the stochasticity results from numerical schemes, only the mean is
the quantity of interest. The variability around the mean is seen as noise that can be
reduced by replicating the calls to the simulator at the same input configuration.

The input and/or output of a simulator may be functional. For instance in an en-
vironmental simulator, the practitioner needs to specify among the inputs the maps of
used soil and the climatic sequence with the temperature and the amount of rain [JP4].
Some outputs are spatially and temporally distributed as the emission of some chemical
constituents for each pixel of the spatial map and for each day of the simulated period.
To deal with these high dimensional inputs and outputs, the main practical solutions
consist in reducing the dimension thanks to a projection method such as Principal
Components Analysis (PCA) or Singular Value Decomposition (SVD) and/or func-
tional basis such as polynomial basis or the Karhunen-Loève expansion [68] which is
appropriated to represent a stochastic process. The usual techniques in UQ rely on
these lower dimensional approximation to deal with these cases of functional outputs

https://www.comses.net/
https://ccl.northwestern.edu/netlogo/references.shtml
https://ccl.northwestern.edu/netlogo/references.shtml
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(see [85] for calibration and [7]). For emulating simulator with time-series output,
another proposition is to use time-series statistical models where some stochastic pro-
cess are assumed to be Gaussian processes (GP) over the simulator input space [113].
The works with functional input are scarcer [87] but this is currently an active field of
research.

The computer model may consist of several simulators coupled in the sense that the
inputs of a simulator are the outputs of another simulator. One can consider the global
computer model as a unique simulator in which case the analysis and the emulation are
performed by the usual techniques. However, some recent works [100, 119] show that
one can take advantage of uncoupling the simulators to emulate them separately and
then couple the emulator. When the same simulator is self-coupled iteratively mean-
ing that the outputs of the simulator obtained at a given step become the inputs of
the simulator for the next step and so on, a solution could be to emulate the simu-
lator which models the transition between two steps instead of emulating the global
simulator which outputs all the series of outputs at all steps [40].

2.1.2 Statistical Models and Notations

In this section, we introduce the main notations and the terminology used in the next
sections. Although these terms were informally introduced above, we give more pre-
cise definitions of the key concepts. We also introduce some classical statistical models
that incorporate the simulator and which are common to some contributions and per-
spectives.

Simulator. The simulator is a function denoted by f . It is often a black-box func-
tion in the sense that for a given input a computer code produces an output but the
function has no analytical expression or its expression is unknown to the practitioner.
In some papers, the term “computer code” actually means the simulator. This code
may consist in a numerical solver of ODEs or PDEs. An evaluation of the simulator is
time consuming, which makes any repetitive task involving the simulator challenging.
This computation cost is generally translated into a maximum number of runs of the
simulator which is called the simulation budget.

Its input variables may be functional as well as its outputs but for the sake of sim-
plicity, we assume that f :Rq →R. Furthermore, we assume that the inputs are only
continuous variables and not discrete or qualitative which should require specific con-
siderations [176]. We denote by z ∈ Rq or by (x,θ) ∈ Rp ×Rd the inputs depending
on whether it is necessary or not to make a distinction between the parameters θ of the
simulators and the input variables x. The latter notation is used when physical / field
experiments corresponding to this simulator are available. In this case, the x’s have
a physical counterpart and are observed while the θ’s are unknown. The x’s may be
called controlled or environmental variables depending whether they can be set up by
a user in the physical experiments while environmental variables can be measured but
not controlled. For instance, controlled variable may be the speed and the altitude of
an aircraft and environmental variables may be the outside temperature and humidity
rate. Still, we will not make the distinction in the following since they can be treated
the same way in our contributions. The parameters θ’s may have a physical meaning
such as physical constant (gravity acceleration constant,...) or just tuning parameters
of the code. Again we will not make a distinction although the prior distributions may
be more informative in the former case. When we use the notation z, it means that the
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inputs may be of any kind or a mixture of variables and parameters but the distinction
is not relevant for the given task. For instance, when performing a sensitivity analysis
or emulating all the inputs can be processed in the same way.

Designs of experiments. Since the number of evaluations of the simulator is limited,
the evaluations have to be carefully chosen with respect to the intended goals. The set
of input configurations where the simulator is run is generally called the design of ex-
periments. To emphasize that it corresponds to simulations, we will call it the design
of numerical experiments (DoNE). It is available as a N × q matrix D where N is the
number of evaluations of the simulator and has to be smaller than the computational
budget. The rows of D are then the different chosen input configurations. Contrary
to some real experiments, the practitioner is totally free to choose the input configu-
rations. We denote by f (D) = { f (z1), . . . , f (zN )} the set of simulations for the input
configurations that are in the DoNE. A desirable feature for a DoNE is to well cover
the domain of interest which is generally a bounded set B ⊂ Rq and even given as a
Cartesian product of interval for each dimension, i.e. B =

∏q
j=1[l j , u j ]. The good

coverage property is also called the space-filling property. Many criteria [62, 47] are
given as possible definitions of this property. One popular criterion is maximin crite-
rion [88, JP16]: a design D is maximin if it maximizes the minimal distance between
its pairs of points:

min
z,z′∈D

‖z− z′‖ . (2.1)

On the top of this coverage property, some projection properties can be met if the
design is sought in the class of Latin hypercube design (LHD) [125]. An LHD has
the property that the orthogonal projection of the points on any input dimension j
should be such that there is one and only one point in every subinterval [l j +(u j − l j ) ·
k/N , l j + (u j − l j ) · (k + 1)/N ) (k = 0, . . . ,N − 1) resulting from an equal subdivision
of the domain interval with respect to this dimension.

To relate the DoNE with the intended goals, it is built in two steps: a first initial
design is chosen to be space-filling and then new points are added to the design con-
ditionally to the available information. More precisely, it consists in iterating from a
given DoNE with n points: Dn , the steps:

1. Optimize a criterion Crit with respect to the current available information to
find the new point: zn+1 = arg maxz Crit(z| f (Dn)).

2. Evaluate f (zn+1), and complete the sets Dn+1 = Dn ∪ {zn+1} and f (Dn+1) =
f (Dn)∪{ f (zn+1)}.

This adaptive approach corresponds to Bayesian optimization [123] and is particular
well suited when a GP emulator (GPE) is used for f . The criterion Crit has to be
adapted to the intended goals [89, 9, JP6]. To leverage the parallelization of runs, a
batch of new points can be chosen and added to the design [37].

We can also have access to a design of field / physical experiments (DoFE) when the
goal is to calibrate or validate the simulator. In this case, we have ne recorded couples:
(xe

i , y e
i )1≤i≤ne

. The vectors xe
i ∈R

p correspond to the input variables of the simulator.
We recall that these p input variables are a subset of the inputs of the simulator which
may also have as inputs some additional parameters not observed in the field experi-
ments (in our notation p ≤ q). We use the ne × p matrix notation D e to aggregate the
vectors xe

i and the vector notation ye for the set of observations which corresponds to
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the quantity of interest modeled by the simulator. The DoFE may be chosen or just
observed depending on the case at hand. When the input variables are controlled, the
question of choosing the experiments to run is relevant [133]. Otherwise when they
are environmental, the only option is to measure them. We use the index or super-
script e to refer to the field experimental data instead of f to avoid confusion with the
simulator.

Emulator. To alleviate the computational burden due to a simulator, an emulator is
built on the basis on its evaluations at the input configurations aggregated in the DoNE.
An emulator is a fast approximation of the simulator which can also be named a surro-
gate model, a meta-model or a response surface. Two desirable features of an emulator
are the interpolation on the points of the DoNE and the quantification of the error due
to the replacement of the simulator. The interpolation makes sense when the simula-
tor is deterministic since another run of the simulator at the same input configurations
will produce the same output. The quantification of the additional uncertainty due to
the emulator may be available as an additional variability which is easy to integrate in a
statistical model. GP emulator (GPE) are popular emulators since they have these two
features and are simple to manipulate. They derive from Kriging which comes from
spatial statistics [98, 120, 44] and were first used to emulate a simulator in the seminal
paper of Sacks et al. [145]. For the last decades, they were widely used and some con-
nections have been made with kernel interpolation [151, 170] in approximation theory
[T1].

To build an emulator for f , it is assumed to be a realization of a GP F over the
space Rq . Another interpretation is to consider the GP F as a prior distribution on
the function f . The distribution of the GP is given as F ∼GP (m(·),σ2

F C (·, ·)) where
m is the mean function, σ2

F the variance and C the correlation kernel. The mean func-
tion is usually given as m(z) =

∑m
j=1β j h j (z) = H (z)Tβ with h j known functions

such as linear or polynomial functions of the inputs and β j ’s unknown parameters to
be estimated. The m dimensional vector H (z) contains the m functions evaluated in
z and β aggregates the β’s. The variance is also a parameter to be estimated. The cor-
relation kernel is a symmetric positive definite function which depends on additional
parameters such as the range with respect to the different inputs. Usually, the correla-
tion kernel is assumed to be a product of univariate radial basis function (RBF) k, i.e.
C (z,z′) =

∏q
j=1 k(|z j − z ′j |). This implies that the Gaussian process is second order

stationary.
The function k may be a power exponential function: k(d ) = exp(−dα/ψ) where

ψ ∈ R∗+ is a range parameter determining the distances for which the correlation still
matters. The parameter α is a regularity parameter lying in (0,2]. If α = 1, k is called
an exponential RBF and if α = 2, k is called squared exponential RBF or Gaussian
RBF. This class of RBF leads to GP continuous in mean square but (infinitely) differ-
entiable in mean square only for α = 2. Another popular RBF is the Matérn class
of RBF, the general expression of which is rather technical since it depends on the
Gamma function and a version of the Bessel function. It also depends on a regularity
parameter denoted by ν and a range parameter also denoted by ψ. For ν = p + 1/2
with p ∈ N, we have simple analytic expressions. For example, when ν = 1/2, we
get the exponential RBF, for ν = 3/2 k(d ) = (1+

p
3d/ψ)exp(−

p
3d/ψ), for ν = 5/2

k(d ) = (1+
p

5d/ψ+5d 2/(3ψ2))exp(−
p

5d/ψ) and for ν→∞we retrieve the squared
exponential RBF. The GP with a Matérn RBF is k-times mean square differentiable if
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and only if ν > k. For more details on correlation kernels, see [140]. The range param-
eterψ can be the same for any input dimension or indexed by the dimensionψ j leading
to q parameters. These two cases are respectively called isotropic or anisotropic. These
range parameters ψ’s as well as the β’s in the mean function and the variance σ2

F have
to be estimated whereas the regularity parameter and the class of RBF are fixed by
the practitioner from some prior knowledge on the simulator f . Different approaches
exist to deal with these hyperparameters leading to more or less computational bur-
den. In a full Bayesian approach, prior distributions must be set. They can be also
estimated by maximum likelihood estimates (MLE) from the data f (D) and be then
plugged into the GP. Instead of the MLE, the posterior modes of these hyperparame-
ters can be plugged in. The use of specific prior distributions [77] helps to make the
emulation more robust in the sense that it avoids the degeneracy of the covariance
matrix computed at the DoNE locations. Cross validation methods can also produce
estimates for this hyperparameters [5].

When the hyperparameters are fixed, the GP process F conditioned to the data
f (D) is still a Gaussian process with analytic expression for the mean and the variance:

F | f (D) ∼ GP (mD ,β(·),CD ,β(·, ·)),
mD ,β(z) = H (z)Tβ+ΣT

zDΣ
−1
D ( f (D)−HDβ)

CD ,β(z,z′) = σ2
F (C (z,z′)−ΣT

z′DΣ
−1
D Σ

T
zD )

(2.2)

where HD is a N ×m matrix such that (HD )i j = h j (zi ), ΣzD is a N dimensional vector
s.t. (ΣzD )i =C (zi ,z) andΣD is a N×N vector s.t. (ΣD )i j =C (zi ,z j ) and f (D) is con-
sidered as a N dimensional vector. If we choose a flat prior on β∝ 1, the conditioned
GP is still Gaussian with analytic expression for the mean and the variance:

F | f (D) ∼ GP (mD (·),CD (·, ·)),
mD (z) = H (z)T β̂+ΣT

zDΣ
−1
D ( f (D)−HDβ̂)

CD (z,z′) = σ2
F (C (z,z′)+ u(z′)T (H T

DΣ
−1
D HD )

−1u(z)−ΣT
z′DΣ

−1
D Σ

T
zD )

(2.3)

with u(z) =H T
DΣ
−1
D ΣzD−H (z) and β̂= (H T

DΣ
−1
D HD )

−1H T
DΣ
−1
D f (D) the generalized

least square estimator. For particular prior distributions on the couple (β,σ2
F ) it is still

possible to obtain a known posterior process (Student process) but if a prior distribu-
tion is also considered for the correlation kernel parameters, the full distribution can be
only sampled [149]. Since integrating the uncertainties on theβ’s is simple, the popu-
lar Gaussian process emulator comes from Equation 2.3. The conditional mean acts as
an approximation of f over the domain of interest and has the property to interpolate
the simulator (i.e. mD (z) = f (z) if z ∈ D). The conditional variance is a measure of
uncertainty on the quality of the approximation. It is zero for the evaluations that have
already been run, i.e. CD (z,z) = 0 if z ∈ D . Figure 2.2 displays a simulator with one
dimensional input space and its GPE from a design of 5 points. The simulator f is only
known to the practitioner on 5 locations, a GP distribution with a constant mean and
a Matérn 5/2 kernel for the correlation. The conditional mean and the pointwise 95%
credibility interval for any location are provided. The conditional mean interpolates
the 5 evaluations of f and the credibility interval tends to be narrower near the design
locations up to be exactly zero at these locations.

Remark. If the simulator is stochastic, the covariance of the GP can be chosen as:

Cov(F (z), F (z′)) = σ2
F C (·, ·)+τ2δz=z′
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Figure 2.2 – Example of a GPE from 5 evaluations (red dots) of the simulator f . The pointwise
credibility interval is obtained from the conditioned variance.
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where δz=z′ = 1 if z= z′, δz=z′ = 0 otherwise. As a heritage from the spatial statistics
literature, this additional term is called the nugget. It prevents the conditioned mean
mD from being an interpolator and the uncertainty at any point of the design is then
τ2. It can also act as a regularization parameter and leads to an emulator with better
statistical properties, such as predictive accuracy and coverage, in a variety of common
situations [75]. More sophisticated models are also possible for stochastic simulator.
The nugget can also dependent on the inputs and be modeled as another GP [73, 14].

We can interpret the GPE as a kernel interpolator since a Reproducing Kernel
Hilbert Space (RKHS) HC can be associated to C the correlation kernel as soon as
it is positive definite [3, 140]. We define g (z) = f (z)− H (z)T β̂ as the function to
interpolate where β̂ can be fixed or estimated by the general least square estimator.
This function g is assumed to lie in the RKHSHC and we consider the interpolation
problem on D :

�

minv∈HK
‖v‖HC

such that g (zi ) = v(zi ), i = 1, . . .N .

The solution to this problem ṽ is equal to the second term in the expression of m
D ,β̂

in

Equation (2.2) i.e. ṽ(z)+H (z)T β̂= m
D ,β̂
(z) for any z [152, T1]with β̂ being plugged

in. Moreover, this interpolator comes with a control of the pointwise error which is:

∀z, | f (z)−m
D ,β̂
(z)|= |g (z)− ṽ(z)| ≤ ‖g‖HC

PD (z) ,

where PD (z) = C
D ,β̂
(z,z)/σ2

F from Equation (2.2). This bound being deterministic,

the kernel interpolation vision is often used in theoretical proofs which requires a con-
sistency of the emulator [JP16, JP7].

Screening and sensitivity analysis. The goal of screening and sensitivity analysis
(SA) is to assess the impact of the inputs of the simulator on its output. We focus on
global methods which assess the effect of an input over its domain of variation. Other
methods are said to be local and provides the effect of making a small change for an
input at a precise location.

Screening is a coarser method in the sense that it mainly separates inputs with no ef-
fect or a negligible effect from inputs which do impact the output. These two groups of
variables are called respectively inert and active variables. A major method for screen-
ing is the Morris method [124] which consists in evaluating the effects of elementary
displacements in a normalized input space on the output. Thus, a particular DoNE is
related to this method which is called one-at-time since the elementary displacements
are made with respect to each dimension successively the other ones being fixed. An-
other method is linked with the GPE [111] since the screening is performed on the
parameters related to the inputs of the emulator.

SA methods provide a quantification of the effects of the inputs and help to order
them from the most impactful to the least one. They can also provide information on
the interactions between inputs. The basic methods for SA derive from linear models:
linear regression and analysis of variance (ANOVA). The latter needs a discretization
of the input space but is able to deal with a mixture of quantitative and qualitative
inputs. The extension of the ANOVA model is the functional ANOVA coming from
the Hoeffding decomposition which allows to define the so-called Sobol’ indices [157].
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Recent works [45] propose to use some dependence measure such as Hilbert-Schmidt
independence criterion (HSIC) to consider the impact of an input on the whole distri-
bution of the output and not only on the variance as the Sobol’ indices do.

Calibration and validation. For performing calibration and validation, a DoFE and
the corresponding results of field experiments must be available. These experiments
and the simulator are related through a statistical model as proposed in the seminal
paper of Kennedy and O’Hagan [93]. First, we assume that the field experiments are
noisy observations of the real phenomenon f R: for i = 1, . . . , ne ,

y e
i = f R(xe

i )+ εi (2.4)

where a simple distribution can be assumed on the noise such as εi
i .i .d .∼ N (0,σ2

ε ) since
they are considered as measurement errors. Moreover some strong prior information
can be available on σ2

ε since the precision of the measuring devices may be known.
Second, a link between the real phenomenon and the simulator is assumed:

f R(x) = f (x,θ)+δ(x) . (2.5)

It then results in
y e

i = f (x,θ)+δ(x)+ εi . (2.6)

Recall that we use the notation (x,θ) for the set of inputs since we want to distinguish
between input variables which are observed on field experiments and input parame-
ters which do not have a physical counterpart. Ideally, if the simulator was a perfect
representation of the reality, it would exist a parameter θ∗ such that f R(x) = f (x,θ∗).
The parameter θ∗ is then interpreted as the true and the best fitting parameter. Un-
fortunately, it is rarely the case. Hence, a so-called discrepancy function or bias
function δ is added to compensate for what the simulator misses. Obviously this
parametrization leads to an identifiability issue since for two different couples (θ1,δ1)
and (θ2,δ2) we may have δ1(x) = f R(x)− f (x,θ1) and δ2(x) = f R(x)− f (x,θ2). In
a Bayesian perspective [93], the solution is to set a prior distribution on the discrep-
ancy: δ ∼GP (mδ(·),σ2

δ
Cδ(·, ·)). A common choice for the mean is mδ = 0 since the

parameter θ is sought as the best fitting parameter which makes f as close as possible
to f R and then the discrepancy helps to compensate a systematic error. This system-
atic error depends on the input variables since it is expected that if the simulator has a
flaw in its modeling for a given x, this should be also the case in the neighborhood of
x. However, this GP prior for the discrepancy does not prevent some confounding ef-
fects with θ. Although the predictions issued by this model are generally good in spite
of the confounding effects, the confounding is still puzzling for many statisticians and
practitioners (see the discussions in [93]). A case for better specifications of the prior
distribution of δ relying on expert knowledge was made in [25]. Other solutions to
limit the confounding is to impose constraints on the GP modeling the discrepancy.
The prior distribution on the discrepancy can be assumed to be orthogonal to the gra-
dient of the simulator [137]. Another solution is to model the discrepancy by a scaled
GP which consists in setting a non increasing prior distribution on the L2 norm of the
GP [76]. This will encourage the discrepancy to be as small as possible. If the prior
distribution is flat it corresponds to the classical GP modeling for the discrepancy.

In a frequentist context, the model is similar but the estimation is done in two steps.
First the parameter θ∗ is estimated as the solution to arg minθ

∑ne
i=1(y

e
i − f (xe

i ,θ))2.
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Second, the data (xe
i , y e

i − f (xe
i ,θ∗))1≤i≤ne

are used to learn δ with non-parametric
estimates [166, 165, 173]. These methods can be referred to as L2 calibration.

In the same spirit in the Bayesian literature, this approach which consists in splitting
the inference in separated tasks is called modularization [112]. The general model is
cut into different modules where the inference is conducted with the other being fixed.
As in the L2 calibration, the discrepancy module and the calibration parameters may be
inferred in two steps. Moreover, in a joint inference without modularization, the field
data should impact inference of the emulator although these data are of different nature
than the evaluations of the simulator. The modularization for the emulator consists
in using only the evaluations f (D) to build it. This not only limits the computational
burden but also prevents a flawed model for field data to contaminate the emulator. A
comparison of the different practical solutions of [93, 86, 8] to conduct calibration is
done in G. Damblin’s Ph.D. Thesis [46].

There exist other techniques for calibration which are more focused on determin-
ing a subset of the input parameter space coherent with the observed field data rather
than deriving a posterior distribution of the parameter. History matching [43, 172] ac-
counts for the different sources of uncertainty and proceeds by exclusion of the regions
of the input parameter space which are implausible with the field data. The bound to
bound approach [65] deploys semidefinite programming algorithms where the initial
bounds on calibration parameters are combined with initial bounds of experimental
data to produce new uncertainty bounds for the calibration parameters that are con-
sistent with the data.

The validation method proposed in [8] consists in providing tolerance bounds
around the posterior predictive mean which should contain with a high probability
the true real process. These bounds are computed by integrating the different sources
of uncertainties on the simulator due to its emulation and its discrepancy with the
real world process, its parameters, field data... The prediction for a new input variable
location xne w can be either a pure-simulator prediction given as

f̂ (xne w , θ̂) = mD (xne w , θ̂)

where θ̂may refer to the posterior mean or the posterior mode and mD is used instead
of f if we consider an expensive simulator, or a bias-corrected (discrepancy-corrected)
prediction given as the mean:

f̂ R(xne w ) =
1
M

M
∑

j=1

�

F ( j )(xne w ,θ( j ))+δ ( j )(xne w )
�

where F ( j ) are posterior realizations of the GP F given f (D) (evaluations of f at the
DoNE) and (θ( j ),δ ( j )) are sampled from the joint posterior predictive distribution de-
riving from Equation (2.5) given the field data ye . For a fixed level γ , the tolerance
bounds τ = τ(x) are then computed such that γ · 100% of the samples satisfy:

�

�

� f̂ (xne w , θ̂)−mD (xne w , θ̂)
�

�

�< τ

for the pure-simulator prediction. Similarly for the bias-corrected prediction, τ are
computed such that γ · 100% of the samples satisfy:

�

�

� f̂ R(xne w )−
�

F ( j )(xne w ,θ( j ))+δ ( j )(xne w )
�

�

�

�< τ
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A practitioner will then decide whether to use or not the posterior prediction issued
by the simulator by comparing the width of the tolerance bounds with the accuracy
required for the intended use. In our contributions [JP10, P3], we rather consider
the validation task as hypothesis testing or as model selection problem where the two
models in competition assume δ = 0 or δ 6= 0. This approach shares similarities
with [132]. The authors propose to keep some field data on which a validity metric
is computed. Below a certain tolerance level, the statistical model that embeds the
simulator may be deemed as not valid. The metric is named a highest posterior relative
density defined as, for a new field data (not used in the computation of the predictive
distribution):

γ (yne w ) = 1−
∫

I
��

y :
π(y|ye )

q(y)
≥
π(yne w |ye )

q(yne w )

��

π(y|ye )d y (2.7)

where q is a reference distribution which can be taken as a uniform distribution, I(A)
is the indicator function for the set A and π(·|ye ) is the predictive distribution for a
new observation conditioned to the considered field data. Note that this definition
corresponds to the case of a cheap simulator. The definition can be extended to embed
an emulator. This metric says to what extent an actual observation is plausible under
the posterior predictive distribution. If this metric is smaller than a small threshold
(e.g. 0.05, 0.01) for too many new field data, the prediction issued by the model are
then suspect. Note that the predictive posterior distribution can be derived from a
model with or without a discrepancy. In the former case, it can assess whether the
simulator by itself captures sufficiently well the real process and in the latter case it
can assess whether the discrepancy modeling is appropriate to compensate the bias of
the simulator. The paper [132] and the section dedicated to model validation in [149]
also deal with the cases where the outputs of the simulator are inaccessible to physical
experiments. Only small experiments can be made and compared to some intermediate
outcomes of the simulator.

2.2 CONTRIBUTIONS

My contributions are presented below, grouped by methodological issues.

2.2.1 Sensitivity Analysis and Screening in Complex High Dimensional Simu-
lators

The contributions in this section are mainly devoted to perform simple sensitivity anal-
yses on complex simulators. The complexity is a result of the long computational time
and the huge amount of outputs produced by the simulators. We proposed some tools
to visualize the impacts of the inputs on the outputs at different levels (temporal, spa-
tial and aggregated). An emerging difficulty stems from the mixture of various types of
inputs. They vary in dimension: time-series, spatial map, scalar and in nature: quanti-
tative or qualitative including the resolutions at which the simulator is run.

2.2.1.1 Analysis of Nitroscape Simulator

Presentation of NitroScape. In [JP4], we conduct an SA of NitroScape. NitroScape
is a deterministic, spatially distributed and dynamic model describing Nitrogen (in its
various chemical forms Nr ) transfers and transformations in rural landscapes [60]. For
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each simulated day, it couples four modules characterizing farm management, biotrans-
formations and transfers by the atmospheric and the hydrological pathways (see Fig-
ure 2.3(a)). It simulates the concentrations and fluxes, including the losses, of different
forms of Nr (reduced forms (ammonia N H3, ammonium N H+4 ), inorganic oxidized
forms (nitrate NO−3 , nitrogen oxides NOx and nitrous oxide N2O) and organic forms
(manure, crop residues) within and between several landscape compartments: the at-
mosphere, the hydro-pedosphere (soil, water table, groundwater and streams) and the
terrestrial agroecosystems (livestock buildings, croplands, grasslands and semi-natural
areas).

Running NitroScape for SA. To run NitroScape we have to provide a spatial map
describing the land use, climatic time-series giving amount of precipitations and tem-
peratures and values for specific input parameters. The spatial map was chosen as a
simplified theoretical landscape of 300 ha (Figure 2.3(b)) corresponding to an intensive
rural area with succession of maize and wheat crops in a checkerboard distribution (125
ha each), pig farming buildings (two separate buildings, one ha each), and unmanaged
grasslands (5 plots scattered, 48 ha in total). The topography was set as a linear slope
with a gradient of 50 m. Meteorological data used for simulations were measured with
a meteorological station located on the Kervidy-Naizin catchment (Brittany, 48◦01’N,
2◦83’O) between 2007 and 2011. It corresponds to humid climatic conditions and little
temperature contrasts. 11 input factors were considered: the spatial (i .e . horizontal and
vertical) resolution of the model (quantitative input factors A and B), the biophysical
parameters which affect a priori the Nr fluxes in the agro-pedo-hydrosphere (quanti-
tative input factors C to I) and two farm practices which mainly affect Nr fluxes and
concentrations (qualitative and quantitative input factors J and K). Three levels were
considered per factor. A fractional factorial design (FFD) [147] of size 243, that corre-
sponds to 243 configurations combining the 11 input factors, was chosen of resolution
5. It then makes it possible to determine for each output the main effects and the pair-
wise interactions of input factors, without confounding effect between factors [21], in
a model of analysis of variance (ANOVA). This design was also saturated since there
was no residual degree of freedom to estimate the variance. From the simulations cor-
responding to the FFD configurations, the SA indices are computed in order to assess
the effect of these 11 factors. The impact of the different land uses is quantified through
the spatial analyses of the SA indices.

Simulations were performed at a daily time step and integrated over a five-year pe-
riod, starting from January 1s t , 2007. The first two years of simulation were used for
model initialization and the sensitivity analysis used the results provided by the last
three years of simulation only. Daily outputs were sampled from the variables simu-
lated at the catchment outlet and monthly outputs were sampled from results obtained
at different locations within the landscape. Spatially-distributed outputs formed large
sets of data that were difficult to handle with conventional statistical tools: each out-
put was described by a matrix of 243 rows and up to more than 7.105 columns. Each
row corresponded to each configuration of the FFD and each column corresponded to
each output variable in each grid cell of the theoretical landscape. For instance, for the
highest horizontal resolution (i .e . grid cells of size 12.5 m x 12.5 m each, Fig. 1b), the
theoretical landscape included 19,600 grid cells, each characterized by the value of the
36 simulated monthly output variables, which resulted in 705,600 columns. For this
reason, the output variables were spatially- or temporally-aggregated to produce dif-
ferent types of data sets: time series describing spatially-aggregated outputs were used
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to perform temporal sensitivity analysis, while maps of temporally-aggregated outputs
were used for spatial sensitivity analysis. All output variables were also spatially- and
temporally-aggregated to provide a synthetic view of the sensitivity of model outputs
to input factors.

Sensitivity indices. For each configuration i of the FFD (i = 1, . . . ,N ; N = 243), let
Yi be the outputs of interest (Yi = f (zi ,1, . . . , zi ,q ); q = 11; factor number j = 1, . . . , q
corresponding respectively to letters A to K). These outputs are scalar and have been
obtained by spatially- or temporally-aggregation or by projection of the time series or
the spatial map of a given output on one axis of a PCA. Note that we make a slight
abuse of notation in this paragraph, by considering that f may correspond to different
aggregations or projections of some outputs of the simulator. The notation zi , j stands
for the input factor j of the configuration i of the FFD. The three different levels of
each factor j are denoted by k (k = 1,2,3). An ANOVA model was adjusted to analyze
main effects and second order interactions between factors:

Yi = f (zi ,1, . . . , zi ,q ) =µ+
q
∑

j=1

α( j )zi , j
+

∑

1≤ j< j ′≤q

β( j , j ′)
zi , j ,zi , j ′

+ Ei

where α( j )zi , j
is the main effect of factor j on the output and β( j , j ′)

zi , j ,zi , j ′
is the pairwise

second order interactions between factors j and j ′ on the output, with 1 ≤ j < j ′ ≤
q . These two effects were calculated by using the least squares method. The FFD
being saturated, the residual terms Ei were all zero. The residual variance could not be
therefore estimated. Since the NitroScape model is a deterministic model, the residual
variance would have only corresponded to interactions of order higher than two. For
a given output, the main effect of each factor j is:

mSI j =
3
∑

k=1

#Z (k)j · (Ȳ
(k)
j − Ȳ )2

Á

T SS

where Ȳ = 1
n Yi is the overall average of Yi ’s, Z

(k)
j = {1 ≤ i ≤ n : zi , j = k} are

the sets of configurations i such that the factor j has level k, # denotes the cardinal
of a set, Ȳ (k)j = 1/#Z (k)j ·

∑

i∈Z (k)j
Yi are the means for the levels k of factor j and

T SS =
∑n

i=1(Yi − Ȳ )2 is the total sum of squares.
For each 1≤ j < j ′ ≤ q , the pairwise interaction effects are given by:

SI j , j ′ =
3
∑

k ,k ′=1

#Z (k ,k ′)
j , j ′ (Ȳ

(k ,k ′)
j , j ′ − Ȳ (k)j − Ȳ (k

′)
j ′ + Ȳ )2

Á

T SS

whereZ (k ,k ′)
j , j ′ = {1≤ i ≤ n : zi , j = k and zi , j ′ = k ′} are the sets of configurations i such

that the factor j (resp. j ′) has level k (resp. k ′) and Ȳ (k ,k ′)
j , j ′ = 1/#Z (k ,k ′)

j , j ′ ·
∑

i∈Z (k ,k′)
j , j ′

Yi .

We also defined for each factor j an index summing up pairwise interaction effects
involving this factor:

i SI j =
∑

j ′: j ′ 6= j

SI j , j ′ ,

an index describing the total (i .e . main and interaction) effect of factor j :

t SI j = mSI + i SI j ,
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(a) (b)

Figure 2.3 – Scheme of the NitroScape model (a). Land use and topography of the theoretical land-
scape (b), shown here for the highest spatial horizontal resolution of the model (grid cells of size 12.5
m x 12.5 m each). The blue star indicates the catchment outlet.

and an index describing the sum of interactions between all factors:

it ot =
∑

1≤ j< j ′≤q

SI j j ′ .

The FFD being saturated, the sum of the main effects of all factors (mSI j ) and
of the ensemble of pairwise interactions (it ot ) added up to 100% of the total variance
explored by the experimental design. Thus, it ot was used as a direct measure of the
variance that could not be attributed to any single factor.

Workflow and results. The workflow used to analyze the NitroScape model is de-
scribed in Figure 2.4. Three levels of analyses are considered: a temporal analysis where
the outputs are spatially-aggregated, a spatial analysis where the outputs are temporally-
aggregated and a global analysis in which aggregation is both spatial and temporal.

For the global analysis, PCA was applied to the ensemble of sensitivity indices of
the ensemble of temporally- and spatially-aggregated outputs, in order to better visual-
ize the outputs that had similar responses to input factors and evaluate the relationship
between the overall effects of the different factors. A hierarchical clustering and a PCA
was applied to the data set S (=(Si j ) 1≤i≤243, 1≤ j≤66), in which each row corresponds to
each of the 243 configurations of the FFD and each column corresponds to each of the
11 main sensitivity indices mSI j and each of the 55 (=

�11
2

�

) pairwise interaction in-
dices i SI j . Figure 2.5 displays the PCA with the 5 identified clusters of the 29 outputs
of NitroScape. The clustering gather together outputs which are mostly impacted by
the same inputs and the PCA helps to identify for these clusters which are these in-
puts. For instance, the light blue cluster gathers two outputs (NO−3 concentration in
groundwater and N H+4 concentration in soil) which are mainly sensitive to vertical
resolution set when running the simulator. This figure also helps to identify the most
important inputs and their joint influence. For instance, the two inputs C and D are
often both influential or none of them is. When a simulator has many outputs, this
plot allows the practitioner to have a quick glance at the main effects of the inputs.

The complete temporal analysis for N H+4 uptake by plants is provided in Fig-
ure 2.6. The projection on the three principal component of the time-series S =
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Design of exper-

iments and runs

of NitroScape

Temporal analyses Spatial analyses Global analyses

Spatial aggregation
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Visualization
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SA on each PCA com-
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sensitivity indices

PCA visualization

Figure 2.4 – Workflow of sensitivity analyses (see Subsection 2.2 for details). SA means Sensitivity
analysis and PCA means Principal component analysis.

(Yi t ) 1≤i≤243, 1≤t≤36 reduces data redundancy and identifies features linked to the model
structure [103], such as seasonality, the first component being the average value and
then the two others being related to seasonality. For each of these components, the
sensitivity indices are computed. Clearly, the variation in the average value of N H+4
uptake (PC1) comes mainly from pairwise interactions involving soil surface porosity
and fertilization type (factors F and J) while its seasonality (PC2) is more related to soil
lateral transmissivity (factor C) and its interactions.

The complete spatial analysis for N H+4 uptake by plants is provided in Figure 2.7.
The PCA is applied to the spatial maps S = (Yi s ) 1≤i≤243, 1≤s≤nc where nc is the total
number of grid cells. PC1 describes roughly the spatial mean of FFD variance. PC1 was
mostly sensitive to the main effect of soil surface porosity (factor F) and to its pairwise
interactions. PC2 was strongly correlated with unmanaged grasslands downslope and
less correlated with croplands and upslope areas.

Figures 2.6 and 2.7 represent two different aspects of the detailed sensitivity anal-
ysis of the accumulated N H+4 uptake by plants. The joint analyses of the spatially-
aggregated and temporally-aggregated data sets made it possible to analyze the effects
of the inputs on outputs from two complementary points of view and offered a more
comprehensive visualization of the effects of the inputs.

2.2.1.2 Analysis of WALTer

In [JPC2], we study a simulator which simulates the individual development of plants
and their interactions. An SA was conducted as in Section 2.2.1.1 on some scalar fea-



32 CHAPTER 2. UNCERTAINTY QUANTIFICATION

●

1−2 Projection

Dim 1 (45.08%)

D
im

 2
 (

20
.5

1%
)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

em(NH3)

em(NOx)

Nitrif

up(NO3)

up(NH4) CET

min(NH4)min(NO3)

dnit(N20)

swc(60cm)

swd(60cm)

sNO3(60cm)
sNH4(60cm)

GW

h(GW)

hr(GW)

Macro(NO3)Macro(NH4)

micro(NO3)

micro(NH4)

NO3(GW)

[NO3(GW)]

NH4(GW)

[NH4(GW)]
H2O [N]

[NH4]

N

NH4

a )

●

1−3 Projection

Dim 1 (45.08%)

D
im

 3
 (

16
.9

2%
)

●●

●

●

●

●
●

●

●
● ●●

●

●

●

●●●
●●

●

●

●
●

● ●

●

●

●

em(NH3)em(NOx) Nitrifup(NO3)up(NH4)

CET
min(NH4)min(NO3)

dnit(N20)swc(60cm)swd(60cm)
sNO3(60cm)

sNH4(60cm)

GW
h(GW)

hr(GW)
Macro(NO3)Macro(NH4)

micro(NO3)micro(NH4)

NO3(GW)

[NO3(GW)]

NH4(GW)
[NH4(GW)]H2O [N]

[NH4]

N
NH4

b )

●

2−3 Projection

Dim 2 (20.51%)

D
im

 3
 (

16
.9

2%
)

●●

●

●

●

●
●
●

●
● ●●

●

●

●

●●●
●●

●

●

●
●

● ●

●

●

●

em(NH3)em(NOx) Nitrifup(NO3)
up(NH4)

CET
min(NH4)min(NO3)

dnit(N20)swc(60cm)
swd(60cm)

sNO3(60cm)

sNH4(60cm)

GW

h(GW)
hr(GW)Macro(NO3)

Macro(NH4) micro(NO3)micro(NH4)

NO3(GW)

[NO3(GW)]

NH4(GW)
[NH4(GW)]

H2O[N]
[NH4]

N
NH4

c )

●

Dim 1 (45.08%)

D
im

 2
 (

20
.5

1%
)

A B

C
D

E

F

GJ
K

C:D

J:K

d )

●

Dim 1 (45.08%)

D
im

 3
 (

16
.9

2%
)

A

B

C
D

E

F
G

J

K C:DJ:K

e )

●

Dim 2 (20.51%)

D
im

 3
 (

16
.9

2%
)

A

B

C
D

E

F
G

J
KC:D

J:K

f )

Figure 2.5 – Principal component analysis and clustering of the results of the sensitivity indices
resulting from the analysis of the 29 temporally- and spatially-aggregated outputs; (a,b,c) projections
of the clusters of outputs onto the plane defined by two principal components; (d,e,f) projections of
sensitivity indices of input factors onto the same planes.
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Figure 2.6 – Temporal sensitivity analysis of N H+4 uptake by plants simulated for the whole land-
scape and averaged by area unit; (a) time series of each simulated configuration of the numerical
experiment (colored lines), central time series (bold black line) and middle region (dashed black line);
(b) time series of three clusters grouping most-similar curves, idCL is cluster label; (c) temporal main
sensitivity indices of each factor (colored lines) and of the sum of interactions (dashed black line).
Sensitivity analysis on each PC: (d,e,f) decomposition of the first three principal components (PC);
(g,h,i) total sensitivity indices of each factor on each PC, split into main (black bars) and pairwise
interaction (gray bars) effects.
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Figure 2.7 – Spatial sensitivity analysis of N H+4 uptake by plants accumulated on the three-year
period of interest in each grid cell of the landscape and averaged by area unit; (a) central map of av-
erages over time within the fractional factorial design (FFD); (b) rsd: coefficient of variation between
configurations of the FFD averaged over time; (c) map of the factors with the highest total sensitivity
index (tSI) in each grid cell. Sensitivity analysis on principal components: (d,e,f) decomposition of
the first three principal components; (g,h,i) total sensitivity indices of each factor on each PC, split
into main (black bars) and interaction (gray bars) effects.
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tures extracted from the tillering dynamics. This first collaboration with plant biolo-
gists is an important source of new questions that will nourish the perspectives.

Presentation of WALTer. WALTer simulates the 3D development of the aerial ar-
chitecture of winter wheat from sowing to flowering. The model is defined at plant
scale, the crop being represented as a population of individual plants (Agent-Based
Model). WALTer describes the plant architecture through a dynamic set of modules
representing the plant components, their topology and geometry. A plant is composed
of several axes (main stem and tillers from primary order to higher orders). WALTer
includes both deterministic and adaptive processes. The development and extension
of vegetative organs (blades, sheaths and internodes) follows descriptive rules. By con-
trast, tillering is described as a self-regulated process and modeled through two simple
rules considering a critical Green Area Index (GAI) at which the emergence of tillers
stops and a critical amount of light intercepted by each tiller under which tiller death is
triggered. In order to simulate tiller regression, the interception of light by each tiller
was computed by a radiative model (CARIBU) [35] applied to the 3D representations
of plants, thus accounting for the competition for light among neighbor plants. The
model is run with a daily time step and time is expressed as thermal time. For the sake of
realism, some stochasticity is included in the model (final number of main stem leaves,
probability of tiller emergence, duration before the plant emergence, plant and organ
positions). This allows to model the effect of micro-environmental heterogeneity or
the variability usually observed in plant development.

Sensitivity analysis. WALTer is based on more than 50 input parameters, so we se-
lected a subset of input factors for sensitivity analysis. After discarding the parameters
with values known with a good confidence from bibliography, we chose to investigate
the effects of parameters with no/sparse experimental data and/or parameters directly
impacting the tillering and GAI dynamics in WALTer formalism. Eventually, 8 inputs
were selected for the SA. 6 inputs correspond to ecophysiological parameters: the crit-
ical GAI inducing cessation of tillering (GAIc), a threshold of intercepted light needed
for the survival of a tiller (PARt), the protection duration between the death of two
successive tillers of a plant (∆prot), the maximal length of the longest blade, the final
number of leaf on the main stem and the range of the proximity GAI (dGAIp). Then
two “environmental” parameters were also selected: sowing density, known to affect
dramatically tillering, and Incident light, that defines the amount of photosyntheti-
cally active radiation incoming each day, on which is based tiller regression. The range
of variation of each input parameter was set in a way to represent the largest space to
explore with only three values. These values were chosen according to bibliographic
and experimental data as well as exploratory simulations.

The two main outputs of interest of WALTer are (i) the tillering dynamics and (ii)
the GAI dynamics, which provides information at the crop scale. We defined a set of
scalar descriptors to summarize those dynamics in the most relevant way. The GAI
dynamics was characterized by two scalar measures: the maximum value of the simu-
lated GAI during the crop cycle (GAImax) and the date at which GAImax is reached
(DGAImax). The tillering dynamics was characterized by four scalar measures: the
maximum number of axes produced per plants (Nmax

axes ), the duration of the tillering
plateau (∆plateau), the number of ears produced per plant (Nears) and the rate of tiller
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Figure 2.8 – Tillering dynamic (on the left-hand-side) and GAI dynamic (on the right-hand-side)
issued by WALTer for a specific set of inputs. The number of axes and the GAI are averaged over all
the simulated plants. The four quantities of interests derived from the tillering dynamic are repre-
sented on the LHS: Nmax

axes , ∆plateau, Nears and sreg and the two ones derived from the GAI dynamic
are represented on the RHS: GAImax and DGAImax.

regression (sreg). See Figure 2.8 for an illustration of these quantities of interest on a
run of WALTer.

These outputs are produced for every plant in a simulation, then they are averaged
on the central plants in the simulated parcel to discard border effects. The number of
plants was set to 200 on the basis of first simulations in order to limit the effect of the
stochasticity of the simulator.

The SA relies on the same methods as in Section 2.2.1.1 with the same FFD of
resolution 5 with 243 configurations. Since the number of inputs is 8, the FFD is not
saturated and the residuals can be estimated. In this case, it corresponds to interactions
of order larger than 2 and of the stochasticity embedded in WALTer.

The main outcomes of the SA is the predominant importance of the critical GAI
and the threshold (PARt).

Calibration and validation. In order to test the ability of WALTer to predict the
GAI and the tillering dynamics, some data with different sowing densities were used
[48]. The dynamics corresponding to an average density (200 plants per squared me-
ter) was used to calibrate the most influential parameters of WALTer. This calibration
was done quite heuristically by minimizing a mean square error between the field data
and the outputs of WALTer. With the notation previously introduced, it consists in
estimating θ̂ such that

θ̂= arg min
θ

∑

t
(y e

t − f (x = 200,θ)t )
2 .

In this case the input variable x is the density and the output is indexed by time since
WALTer gives tillering dynamics. Then, the validation consists in running WALTer
with the calibrated parameters (i.e. evaluation f (x, θ̂) for the other x = x e in the
dataset) for the other densities and to compare with the field data.

The comparison led to satisfying results but some discrepancies appeared. With
respect to some features WALTer had a correct behavior, e.g. the duration of the plateau
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of tillering increased with increasing density as in the dataset even if the duration did
not exactly match the ones in the dataset.

Properly accounting for the specific stochastic nature of the simulator in a well
grounded statistical model is one of the perspectives coming from this work.

2.2.1.3 Analysis of a Crop Circulation Network

In [JP12], we studied a dynamic extinction colonization model (also called contact pro-
cess) which is a wide subject in epidemiology and in metapopulation theory. Contacts
are usually assumed to be possible only through a network of connected patches. This
network accounts for a spatial landscape or a social organisation of interactions. A
major issue is to assess the influence of the network in the dynamic model. The net-
work has to be reduced to simple topological descriptors in order to assess its impact
on the dynamic process. This question is related to the work on network presented in
Chapter 3. It is specifically dealt with in Section 3.2. We can however emphasize here
that the stochasticity matters in this simulator. Indeed, the colonization or infection
events are generally assumed to be stochastic and the network has a limited size which
makes the stochasticity important. Therefore, some scalar features are extracted from
replicates. The impact of the topological descriptors of the networks on these features
was then assessed by an SA derived from an ANOVA model.

2.2.2 Inverse Problems and Calibration

In the papers [JP6, JP2, JP7], we considered inverse problems in the sense that we aimed
to estimate from observations modeled as outputs of the simulator, some of its input
parameters. This task is a calibration task in [JP6, JP2] as presented in Section 2.1.2
while there is an extra layer in the hierarchical model considered in [JP7] since the input
parameters are drawn in a probability distribution. The latter is a random effect model
with different realizations of the parameters corresponding to different observations.
In [JP6, JP2] the inference is Bayesian while it relies on a stochastic version of the EM
algorithm in [JP7].

2.2.2.1 Calibration

Statistical models and corresponding likelihood. In [JP2], we focused on varia-
tions around Equation (2.5). We considered that the simulator needs either to be emu-
lated or not and that a discrepancy function is either added or not. This results in four
different statistical models. We denote byM1 the model with no emulation and no
discrepancy,M2 the model with emulation but no discrepancy,M3 the model with
no emulation but discrepancy and M4 the model with both emulation and discrep-
ancy. When the discrepancy is taken into account in the model, we assume a zero
mean δ ∼GP (0,Cδ(·, ·))

To perform the calibration we derive the four likelihoods. For Models M1 and
M3 the likelihoods read as:

`(θ,σ2
ε ,ψδ ,σ2

δ ;ye ) =
1

(2π)ne/2|Ve |1/2
exp

¨

− 1
2

�

ye −me

�T
V−1

e

�

ye −me

�

«

. (2.8)

where me = me (D
e ,θ) = ( f (xe

i ,θ))1≤i≤ne
, Ve = σ

2
ε Ine

in M1 and Ve = Ve (D
e ) =

σ2
ε Ine
+ σ2

δ
(Cδ(x

e
i ,xe

j ))1≤i , j≤ne
inM3. Note that Cδ does depend on the parameters
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ψδ . The parametersψδ ,σ2
δ

are in gray in the equation above since they intervene only
forM3.

For ModelsM2 andM4, we rely on modularization i.e. the likelihood of the field
data ye conditioned to f (D) where the MLE of the parameters of the GPE have been
plugged in is under consideration for calibration:

`C (θ,σ2
ε ,ψδ ,σ2

δ ;ye | f (D))∝ |Ve | f (D)|
−1/2 exp

n

− 1
2
(ye −me | f (D))

T V−1
e | f (D)

(ye −me | f (D))
o

.
(2.9)

with me | f (D) =me | f (D)(D
e ,θ) = (mD (x

e
i ,θ))1≤i≤ne

and Ve | f (D) =Ve | f (D)(D
e ,θ) with

Ve | f (D) = σ2
ε Ine
+(CD ((x

e
i ,θ), (xe

j ,θ)))1≤i , j≤ne
inM2 ,

Ve | f (D) = σ2
ε Ine
+(CD ((x

e
i ,θ), (xe

j ,θ)))1≤i , j≤ne
+σ2

δ(Cδ(x
e
i ,xe

j ))1≤i , j≤ne
inM4 .

The function mD and the covariance kernel CD are given in Equation (2.3) with the
parameters of the GPE fixed to plugged in estimates. The parameters ψδ ,σ2

δ
are in

gray in the equation above since they intervene only forM4.
In [JP6],M2 is posited. Once prior distributions are set on the parameters, their

posterior distributions can be sampled by combining these prior distribution and the
likelihood in a Metropolis-Hastings algorithm [83].

Design of numerical experiments for calibration. In the previous paragraph, the
likelihoods which integrate a GPE (inM2 andM4) can be obtained from any DoNE D
and the corresponding evaluations f (D). However, some designs may lead to a better
calibration than others. If there is no discrepancy, the gold standard when using a GPE
is to obtain a posterior distribution π2(θ|ye , f (D)) as close as possible to the posterior
distribution π1(θ|ye ). The subscript 1 and 2 in π1,2 refer respectively to ModelsM1
andM2. Under the assumption that σ2

ε is known, the posterior distributions π1(θ|ye )
andπ2(θ|ye , f (D)) are proportional to likelihood coming from respectively Equations
(2.8) and (2.9) times a prior distribution π(θ):

π1(θ|y
e ) ∝ `(θ;ye ) ·π(θ)

π2(θ|y
e , f (D)) ∝ `C (θ;ye | f (D)) ·π(θ) .

The Kullback-Leibler (KL) divergence shows interesting theoretical properties to
measure how far a probability distribution is from a reference one [42]. It reads as

KL
�

π1(θ|y
e )||π2(θ|y

e , f (D))
�

=
∫

Θ
π1(θ|y

e )
�

log (π1(θ|y
e ))−log (π2(θ|y

e , f (D))
�

dθ.

(2.10)
By using results of approximation theory, we can prove the proposition below.

Proposition 1. Under the following assumptions:

A1 π(θ) has a bounded support Θ,

A2 the simulator output f (x,θ) is uniformly bounded onX ×Θ,
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A3 the correlation function (kernel) is a classical radial basis function [151] i.e. there
exists a function k such that C ((x′,θ′), (x,θ)) = k(‖(x′,θ′)−(x,θ)‖)where ‖·‖ can
be chosen as the Euclidean norm,

A4 the function f lies in the Reproducing Kernel Hilbert Space associated with the kernel
defining the correlation function,

A5 the covering distances associated with the sequence of DoNE (DM )M :

hDM
= max
(x,θ)∈X×Θ

min
(xi ,θi )∈DM

‖(x,θ)− (xi ,θi )‖ −→M→∞
0 .

then, we have:
lim

M→∞
KL
�

π1(θ|y
e )||π2(θ|y

e , f (DM ))
�

= 0 . (2.11)

The question is how to choose a limited number of points for D in order to make
the KL divergence from Equation (2.10) the smallest as possible. The heuristic defended
is this work is that the GPE should be close to the true simulator f especially for in-
put configurations (xe

i ,θ)1≤i≤ne
with θ corresponding to a high value of the posterior

distribution π1(θ|ye ).
Such a design D can actually be obtained as a natural by-product of a sequential and

global maximization procedure for searching maxθπ1(θ|ye ). This procedure allocates
the budget of simulation between locations where π1(θ|ye ) is high with respect to the
θ coordinate and ones where exploration is needed. By doing so, the code is likely
to have been run over values of θ which lie mainly in all the regions where π1(θ|ye )
is high. By using the log scale and neglecting terms which do not depend on θ, the
maximization problem is equivalent to solving

max
θ
−‖ye −me‖

2/2σ2
ε + log(π(θ)) . (2.12)

When little knowledge is available on the value of θ, either a uniform prior (if both a
lower and an upper bound are provided) or a locally uniform prior is usually specified
for θ [22].

In such cases, when there is substantial information in the data, the regions of high
probability for π(θ|ye ) are where SS(θ) = ‖ye −me‖2 is small. In the following, we
present our algorithms for constructing D in these cases. They are therefore based on
the sequential minimization of SS(θ). Hence, the construction of the design D will
be independent on the value of σ2

ε . When the likelihood on θ is flat or if an informa-
tive prior is available, the construction of the design can be based on the optimization
problem (2.12) which takes into account the prior at no additional cost. In this latter
case, the construction of the design will depend on the value of σ2

ε since it balances the
weight given to the sum of squares and the one given to the prior.

The Expected Improvement criterion was introduced [89] to find the global ex-
tremum of an expensive simulator and its location. We resort to this EI criterion for
the sum of squares of the residuals function SS(θ):

EIk (θ) =E
�

�

sk − SSk (θ)
�

ISSk (θ)≤sk

�

∈ [0, sk], (2.13)

where

• sk := min{SS(θ1), · · · , SS(θk−1), SS(θk )} and SS(·) denotes the sum of squares
computed from actual runs of the computer code f ,
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• SSk (θ) denotes the sum of squares of the residuals where f (x,θ) is replaced with
the random vector F Dk (θ) =

�

F Dk (xe
1,θ), · · · , F Dk (xe

n ,θ)
�

, the distribution of
which is given by the GPE conditional to f (Dk ):

SSk (θ) = ||y
e − F Dk (θ)||2 .

Note that the subscript k refers here to the current iteration of the algorithm. SSk (.)
is thus a random process and its distribution inherits from the current GPE. At
step k, once we have found θk+1 maximizing EIk , we could add ne new simula-
tions { f (xe

i ,θk+1)}1≤i≤ne
to compute SS(θk+1). This may be infeasible if ne is not

small. Thus we propose an approximate version (see[JP6] for the exposition of the
full computational algorithm) where a location x∗ is chosen among the field locations
(Xe = {xe

1, . . . ,xe
ne
}) so that only one run of the simulator f is run. Thus SS(θk ) can-

not be computed exactly. We use instead its expectation under the distribution of the
current GPE. The location x∗ is chosen as the optimum of a criterion Crit which can
be chosen as:

Crit(xe
i ,θk+1) =Var[F Dk (xe

i ,θk+1)] . (2.14)

This criterion aims to reduce the variance of the GPE where it is larger. Yet, a
better way might perhaps consist in aiming for a reduction of the GPE uncertainty at
an input location (x∗,θk+1) where the code f (x∗,θ) is highly variable with respect to
θ, meaning that x∗ is influential for calibration. We thus introduce a second criterion
which does a trade-off between the calibration goal and (2.14). A normalized version
of it is written as

Crit(xe
i ,θk+1) =

Var
�

F Dk (xe
i ,θk+1)

�

max
i=1,··· ,n

Var
�

F Dk (xe
i ,θk+1)

� ×
Varθ[ f (x

e
i ,θ)]

max
i=1,··· ,n

Varθ[ f (xe
i ,θ)]

, (2.15)

where Var[yθ(x
e
i )] is taken with respect to π(θ). In practice, we need to use an ap-

proximation of (2.15) that is based on the mean of F Dk . The whole sequential design
procedure is described in Algorithm 1.
Remark. Note that D0 in Algorithm 1 may be chosen as being space-filling inX ×Θ
or the coordinates in X may be restricted to be in the subset Xe = {xe

1, . . . ,xe
ne
} to

correspond to actual field experiments.
We compare the proposed sequential designs with classical space-filling designs (re-

stricted or not to the domain Xe for the input variables). We consider the toy simulator:

f : (x,θ) ∈ [0,1]× [5,15]−→ (6x − 2)2× sin (θx − 4), (2.16)

with the field design Xe = {.1, .2 . . . , .9}. The field observation ye were simulated with
θ = 12. Figure 2.9 provides a comparison between space-filling designs and the se-
quential designs we propose. In space filling design, the exploration is uniform over
the dimension in x and in θ. With the sequential design, it is observed that the ex-
ploration over θ concentrates around the true value θ = 12 in the sequential step.
Moreover, the exploration is reinforced for some values of x which makes the simula-
tor more sensitive to θ. Note that the sequential strategy with the full batch of points
{(xe

i ,θk+1)}1≤i≤ne
is clearly not viable since it requests too many evaluations of f at

each step of the algorithm. In [JP6], we show on artificial examples that the posterior
distributionπ2(θ|ye , f (D) is closer toπ1(θ|ye )when D is a sequential design generated
by Algorithm 1 than when D is a space-filling design.
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Figure 2.9 – DoNE for simulator 2.16 with M = 30 call to f . Upper left: maximin-LHS design.
Upper right: Sequential design with 12 starting points sampled as a maximin design restricted to Xe

and 18 sequential points added in 2 batches according to the EI criterion (Algo 1 in [JP6]). Bottom
left: maximin design with restricted to Xe . Bottom right: Sequential design with 12 starting points
sampled as a maximin design restricted to Xe and 18 sequential points added one-at-a-time according
to the EI criterion with criterion given in Eq (2.15) (Algo 1). The black dots are the initial design.
The red stars are the new runs selected from the EI criterion.
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Algorithm 1: Sequential Design Adapted to Calibration
Initialization

• Choose an initial numerical design D0 ⊂X ×Θ of size M0.

• Run the code over D0, then obtain an initial GPE based on f (D0).

• Compute θ̂1 as the posterior mean E[θ|ye , f (D0)].

• D1 =D0 ∪{(x e
i , θ̂1)} where

x∗ = arg max
x∈Xe

Crit(x, θ̂1) .

• Compute s1 :=E(SS0(θ̂1)).

From k = 1, repeat the following steps as long as M0+ 1+ k ≤M .

Step 1 Find of θ?k+1 = arg maxθ EIk (θ).

Step 2 Dk+1 =Dk ∪{(x∗,θ
∗

k+1)} where

x∗ = arg max
x∈Xe

Crit(x,θ∗k+1) .

Step 3 Run the code for the new location (x∗,θ∗k+1)).

Step 4 Update the GPE distribution based on f (Dk+1).

Step 5 Compute sk+1 :=min{E[SSk (θ̂1)], · · · ,E[SSk (θ
∗

k )],E[SSk (θ
∗

k+1)]}.

Table 2.1 – Comparison of the RMSEs and coverage rates in prediction of 100 test-sets on three
randomly selected days whereM ′

2 andM ′
4 are the models based on the Gaussian process established

after the sequential design

M1 M2 M3 M4 M ′
2 M ′

4

coverage rate at 90% (in %) 91 44 85 42 71 68
RMSE of power (W ) 5.103 21.79 4.56 18.78 10.94 9.29

Results on a PV simulator. In [JP2], we were provided by EDF with a fast simulator
of a photovoltaic (PV) power plant. The simulator f (x,θ) outputs the power produced
depending on a vector of meteorological conditions x ∈R4 measured in field data and
on parameters θ ∈R3 describing the characteristics of the PV panels. Data from a test
stand of 12 panels are available over 2 months and instantaneous power was collected
every 10s . To limit the size of the data set, we averaged the power per hour and we
remove the data where the production is zero. It results in 1019 observations. Since
the simulator is fast, ModelM1 orM3 should be used for calibration and prediction.
In order to assess the effect of the additional layer of uncertainty due to the use of an
emulator, we also calibrated the simulator under ModelsM2 andM4. The accuracy of
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predictions under the different models were compared by cross-validation. Three days
of data were successively removed (51 observations) from the learning dataset and were
used as a test dataset. Table 2.1 provides the coverage rates and the RMSEs (Relative
Mean Square Errors) under the four models. For ModelsM2 andM4, we use either a
regular space-filling DoNE or a sequential DoNE that was generated with Algorithm 1.
This shows on a real application that the sequential design significantly improves both
the RMSEs and the coverage rate. This improvement is similar for ModelsM2 andM4
even though the sequential procedure in the algorithm was originally designed under
the assumption of zero discrepancy. Note that the whole process from calibration
through prediction to cross-validation was implemented in the R-package CaliCo [P7].

2.2.2.2 Mixed non Linear Models

The framework of the mixed model is close to the calibration context but the difference
lies in the fact that the field data ye are not all generated with the same value of the
parameter. More precisely, we assume that the field data are ye = (y e

i j )1≤i≤ne ,1≤ j≤ni

where the vectors ye
i = (y

e
i j )1≤ j≤ni

are independent. The dependence within the vector
ye

i is the result of the generation of the yi j ’s with the same parameter value. More
precisely, the mixed model reads as: for i = 1, . . . , ne , j = 1, . . . , ni :

y e
i j = f (xe

i j ,ψi )+ εi j , εi j ∼i i d N (0,σ2
ε )

ψi ∼i i d N (µ,Ω)
. (2.17)

In this model we denote by θ = (µ,Ω) the parameters of the distribution of the latent
parameters ψi ’s. Moreover, we do not assume discrepancy in this model. A classical
framework for this mixed model is longitudinal data where the vectors ye

i are observa-
tions in time for an individual. In this case, the input variables xe

i contain the time of the
observation. The latent parameters ψi account for the specificity of an individual and
are called individual parameters while the parameters θ are called population parame-
ters. In this model, the goal is to infer jointly (θ,σ2

ε ). The likelihood corresponding to
the mixed model (2.17) is

`(θ,σ2
ε ;ye ) =

∫

`(θ,σ2
ε ,ψ ;ye )dψ=

∏ne
i=1

∫

π(ye
i |ψi ,σ

2
ε )π(ψi |θ)dψi

=
∏ne

i=1

∫

¨

π(ψi |θ)
1

(2πσ2
ε )ni /2

×exp
�

− 1
2 (y

e
i − f (xe

i ,ψi ))
t (σ2

ε Ini
)−1(ye

i − f (xe
i ,ψi ))

�

dψi

«

,

(2.18)
where the distributions π(ψi |θ) and π(ye

i |ψi ,σ
2
ε ) are given by Equation (2.17).

A classical solution to deal with a latent variable model is to resort to an EM
(Expectation-Maximization algorithm) [55]. If the function f is not linear in ψ, the
expectation step is not explicit. Then, a standard solution is to use stochastic version of
the EM algorithm such as SAEM (Stochastic Approximation Expectation Maximiza-
tion) [54] or SEM (Stochastic Expectation Algorithm) [29]. An alternative solution is
to rely on Bayesian inference where the latent variables are re-simulated within a Gibbs
algorithm. The simulator f may be the solution of an ODE or PDE. If the solution is
not explicit, the inference procedures are combined with numerical resolution schemes
[57]. This resolution scheme may be costly and then the GP emulation can be inte-
grated in the inference procedure as was done within an SEM algorithm [JP18] or in
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a Bayesian inference [66]. In [JP7], we coupled the GPE with an SAEM algorithm.
To simulate the latent parameters ψ, we resort to an MCMC algorithm as suggested
in [99]. This step needs many calls to f which is unfeasible if f is costly. Thus, the
GPE can be used in the likelihood (2.18) to alleviate the computational burdensome.
A modular approach is used where the posterior distribution of the GP is plugged in
the likelihood:

`D (θ,σ2
ε ;ye ) =

∫

¨

π(ψi |θ)
1

(2π)nt ot /2|Ve | f (D)|1/2

exp
�

− 1
2 (y

e −me | f (D))
t (Ve | f (D))

−1(ye −me | f (D))
�

dψ

«

,

(2.19)

where nt ot =
∑ne

i=1 ni , me | f (D) = (mD (x
e
i j ,ψi ))1≤i≤ne ,1≤ j≤ni

and Ve | f (D) = σ
2
ε Int ot

+
(CD ((x

e
i j ,ψi ), (x

e
i ′ j ′ ,ψi ′)))1≤i ,i ′≤ne ,1≤ j , j ′≤ni

. Note that me | f (D) is a vector of size nt ot

and Ve | f (D) is nt ot × nt ot matrix. This corresponds to what we called the complete
mixed meta-model. The likelihood cannot be factorized as a product of individual
likelihoods which makes the latent parameters ψi all dependent. Moreover, the com-
putation of the likelihood requires the inversion of a nt ot × nt ot -matrix (Ve | f (D)) at
each iteration which is highly computationally intensive. Therefore, we propose an
intermediate mixed meta-model by replacing the matrix Ve | f (D) by its diagonal. This

leads to a likelihood denoted by ¯̀
D (θ,σ2

ε ;ye ) which is fast to compute. And we ne-
glect totally the additional uncertainty coming from the emulator, we obtain the sim-
ple mixed meta-model with the likelihood ˜̀

D (θ,σ2
ε ;ye )where Ve | f (D) is replaced with

σ2
ε Int ot

. This likelihood is simply `(θ,σ2
ε ;ye ) where mD was substituted for f .

Algorithm 2: SAEM-MCMC algorithm for the mixed meta-models
At iteration k, given the current values of the estimators
µ̂(k−1), Ω̂(k−1), σ̂2 (k−1)

ε :

Simulation step: For each individual i successively, update ψ(k)i with m

iterations of an MCMC procedure with π(ψi |ye
i ; bθ(k−1),ψ−i ,σ

2
ε ) as stationary

distribution.

Stochastic Approximation step: update the sufficient statistics sk ,1, sk ,2 and
sk ,3 following the stochastic approximation scheme (l = 1,2,3):

sk ,l = sk−1,l + γk

�

Sl (y
e ,ψ(k))− sk−1,l

�

Maximization step: update the population parameters

bµ(k) =
sk ,1

ne
, bΩ(k) =

sk ,2

ne
−

sk ,1 s t
k ,1

n2
e

, bσ2 (k)
ε =

sk ,3

nt ot
.

An SAEM algorithm (Algorithm 2) is used to estimate the unknown parame-
ters θ = (µ,Ω) and σ2

ε by maximizing one of the three likelihoods of the mixed
meta-models. The simulation step is performed via an MCMC as suggested in [99].
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The stationary distribution depends on the considered likelihood. If the likelihood
`D (θ,σ2

ε ;ye ) is considered, when updating the individual parameterψi , the other indi-
vidual parametersψ−i shall be taken into account in the likelihood computation. Oth-

erwise, the updata on the ψi ’s can be run in parallel since π(ψi |ye
i ; bθ(k−1),ψ−i ,σ

2
ε ) =

π(ψi |ye
i ; bθ(k−1),σ2

ε ). The sufficient statistics for the simple mixed meta-model are stan-
dard as shown in [148]: S1(y,ψ) =

∑ne
i=1ψi , S2(y

e ,ψ) =
∑ne

i=1ψi ψ
t
i and S3(y,ψ) =

∑

i , j (y
e
i j − m(xe

i j ,ψi ))
2. For the complete and intermediate mixed meta-model, the

statistic S3(y,ψ) needs to be adapted. The sequence (γk )k≥0 is a sequence of positive
numbers decreasing to 0 (0< γk ≤ 1).

Under some standard assumptions as the ones done in [99], the SAEM algorithm
(Algorithm 2) produces a sequence of parameters converging to the maximum of the
corresponding likelihood. Following [56], we need a uniform control decreasing with
N (the number of point in the DoNE) on the distances between the approximated like-
lihoods (`D , ¯̀

D and ˜̀
D ) and the true one ` to ensure that the estimates produced by

the SAEM algorithm with an approximate likelihood will converge to the maximum
likelihood estimates of the true likelihood (Eq 2.18). This is given in the next proposi-
tion:

Proposition 2. Under some standard assumptions close to the ones in Proposition 1, we
have

|`(θ,σ2
ε ;ye )− ˆ̀

D (θ,σ2
ε ;ye )| ≤ Ĉ s tye

nt ot

σnt ot+2
ε

GC (hD )

where ˆ̀
D may be any of the approximated likelihood (`D , ¯̀

D or ˜̀
D ), Ĉ s tye is a constant

depending on the chosen approximated likelihood and the data, hD is the covering distance
associate with the DoNE and GC is a function decreasing to 0 with hD → 0 and is provided
in [151] for classical kernel.

The simulation studies have confirmed these theoretical results. In particular, it
was noticed that increasing the number of points N in the DoNE makes the estimates
closer to the maximum of the true likelihood. Working with the intermediate or the
simple mixed meta-model greatly improve the computational time in comparison with
the complete likelihood. The major loss was especially for the estimation of the ob-
servation noise σ2

ε . This noise is overestimated under the simple mixed meta-model
since an additional source of uncertainty (substituted of f by its approximation mD )
is neglected while it may be underestimated if we ignore the covariance of the error
structure of f − mD as done in the intermediate mixed meta-model. Indeed in the
latter model, the approximation uncertainty may be confused with the observation
noise.

2.2.3 Accounting for Simulator Error

The question at stake in [JP10] and [P3] was to decide whether the simulator can be a
good enough representation of the real phenomenon. This question can be transposed
to the discrepancy, deciding whether δ = 0 or not. In a statistical decision framework
combining Equations (2.5) and (2.4) lead to decide between hypotheses:

H0 : y e
i = f (xe

i ,θ)+ εi ,
H1 : y e

i = f (xe
i ,θ)+δ(xe

i )+ εi .
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UnderH1, we assume that δ ∼ GP (0,σ2
δ

Cδ(·, ·)) and underH0 andH1 we still as-

sume that εi
i .i .d .∼ N (0,σ2

ε ).
In a Bayesian framework, the decision between two hypotheses may rely on the

computation of a Bayes factor [92]. A more recent approach consists in considering a
mixture model that encompasses the models defined by the two hypotheses in compe-
tition [90]. The former approach was used in [JP10] while the latter was adopted in
[P3]. Both rely on a simplification assumption on the simulator, it is assumed that the
simulator is linear in θ i.e. f (x,θ) = g (x)T θ.

The Bayes factor is the ratio between the two integrated likelihoods of the two
models:

B0,1(y
e ) :=

π(ye |H0)
π(ye |H1)

where π(ye |H j ) =
∫

ξ j

π(ye |ξ j ,H j )π(ξ j )dξ j .

In the expression above, ξ j denotes all the parameters of the model inH j , it includes
θ and σ2

ε in both models and also the parameters of the discrepancy for the model in
H1. Compatible priors [39] or objective priors [28] have to be chosen to ensure a fair
comparison between the two models. However, these priors have to be proper, other-
wise the marginal likelihood π(ye |H0) is ill-defined. A solution is to use an intrinsic
Bayes Factor [10] where partial Bayes factor are computed by using a part of the data
to make proper an improper prior. Then, the intrinsic Bayes factor is obtained as a
mean of the partial Bayes factor for all possible partitions between data used for mak-
ing the prior proper and data on which the marginal likelihood is computed. In the
model comparison at hand, under simple assumptions on the prior distribution, the
following proposition gives an identity between the intrinsic Bayes factor and the stan-
dard Bayes factor. Under hypothesisH1, we consider the parameters (σ2

δ
, k = σ2

ε/σ
2
δ
)

instead of (σ2
δ

,σ2
ε ) in addition to θ and σ2

ε .

Proposition 3. If π(ξ 0) = 1/σ2
ε , π(ξ 1) = π(θ,σ2

δ
,ψ, k) = π(ψ|k)π(k)/σ2

δ
with

π(ψ, k) proper and m = d + 1 then the intrinsic Bayes factor is:

BA
0,1(y

e ) =
B0,1(y

e )

Cn,n0

∑

|A |=n0

B0,1(y
e (A ))−1 = B0,1(y

e )

where Cn,n0
is the number of choices of n0 items among n items and B0,1(y

e (A )) is the
partial Bayes factor where the subsetA is used to make the prior proper.

Another solution is to consider a mixture of the two models under the two hy-
potheses in competition. We denote respectively by `H0

and `H1
the likelihoods of the

models under the two hypotheses and byMα the mixture model: for i = 1, . . . , ne ,

Mα : y e
i

i nd .∼ α
�

`H0
(θ,σ2

ε ; y e
i )
�

+(1−α)
�

`H1
(θ,σ2

ε ,δ; y e
i )
�

.

This mixture model has to be written conditionally on the discrepancy δ in order
to make the y e

i independent. We provided a theorem in [P3] which guarantees that
the posterior distribution of the parameters is proper for a Jeffreys prior on (θ,σ2

ε )
and a proper prior on the other parameters. The inference was conducted through a
Metropolis-within-Gibbs algorithm where all the parameters are updated successively.
This algorithm also simulates conditionally on the parameters, the discrepancy at the
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Figure 2.10 – Bayes factor computations over 100 simulated datasets of size ne = 30. The x-value
gives the range parameters of the exponential kernel used to generate the discrepancy. The simulator
is a f (x) = (1, x, x2)(θ0,θ1,θ2)

t .

locations xe and binary variables for each i ∈ {1, . . . , ne} indicating whether the data
y e

i was generated underH0 orH1.
In [JP10], a simulation study was conducted to investigate the ability of the Bayes

factor to determine which model is the most consistent with the data. The artificial
data were generated by using a Gaussian process to generate the discrepancy. Different
values for the correlation range of the correlation of the GP were tested. Some results
are reproduced in Figure 2.10. A similar study was conducted in [P3]. Some results are
reproduced in Figure 2.11. Both methods are able to detect the absence of discrepancy
(results not reported here for the mixture model). In Figure 2.11, if the correlation
range parameter is too small the discrepancy is not distinguishable from a white noise.
This is also expected with the intrinsic Bayes factor. What is more surprising is that the
two methods favor the zero discrepancy model when the correlation range parameter
is large. This is a result of the confounding effect which makes the discrepancy to have
a smoothness similar to the simulator. A value of θ different from the true one θ∗, may
compensate for the discrepancy. More precisely, another value θ̃ makes the simulator
close to the simulator with the true θ∗ plus discrepancy: f (x, θ̃)≈ f (x,θ∗)+δ(x) for
all x. This is illustrated with both methods.

2.2.4 Post-processing probabilistic meteorological and hydrological forecasts

The papers [JP3] and [JP9] deal with post-processing of meteorological forecasts, re-
spectively temperature - precipitation forecasts and water flow forecasts. A probabilis-
tic forecast consists in a probability distribution of a given quantity of interest in the
future, for instance the amount of precipitation or the mean temperature the day to
come. This distribution has to be well calibrated and sharp [72]. In this context, cali-
bration has a different meaning than in the usual framework of UQ. Indeed, calibration
means that the prediction intervals at a given level of confidence derived from the prob-



48 CHAPTER 2. UNCERTAINTY QUANTIFICATION

Figure 2.11 – Posterior mean estimates of the mixture parameter α over simulated 100 datasets of
size ne = 50. The x-value gives the range parameters of the exponential kernel used to generate the
discrepancy. The simulator is a f (x) = (1, x, x2)(θ0,θ1,θ2)

t .

abilistic forecast should effectively meet this level of confidence. Sharpness means that
the widespread of the probabilistic distribution should be as narrow as possible.

In meteorology, the forecasts rely on ensemble forecasting. The members of an
ensemble are the outputs of complex meteorological simulator for which the inputs
giving the initial conditions have been slightly perturbed. Meteorologists would like
to consider this ensemble as a sample of the probabilistic forecast. However, this distri-
bution is often shown to be over confident which supports the need for post-processing
to achieve a better calibration. In [JP3], we proposed an exchangeable model to post-
process the temperature and precipitation forecasts from several ensembles.

When the issue at stake is the production of hydroelectricity, the probabilistic fore-
cast of interest is the water flow of a river. This forecast is obtained by inputting tem-
perature and precipitation forecast into a conceptual simulator named a rainfall-runoff
model which outputs the water flow of a river. Even if true temperature and amount
of precipitation are feeding in the simulator, the simulator may still suffer from some
discrepancy. This discrepancy strongly depends on the hydrological regimes: rapid
flood variations induce large errors of anticipation but a series of dry events will trans-
late into a much more smoother sequence of river levels due to the easily predictable
behavior of the soil reservoir emptying. That is why we proposed in [JP9], a two-
regime statistical model which embeds the runoff-rainfall simulator. The two regimes
correspond to different discrepancy structures. The river regime is modeled as a latent
variable, the distribution of which is based on additional outputs of the rainfall-runoff
simulator.

These two contributions in the field of meteorological forecast may lead to more
general contributions. In particular, the combination of several simulators in a prob-
abilistic forecasting goal is interesting for other fields than meteorology. Modeling
discrepancy with several working regimes depending either on the state of the nature
or on some particular working conditions of the simulator could be also sensible in
many applications.
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2.2.4.1 Post-processing meteorological forecasts

The model we proposed in [JP3] relies on Gaussian distribution assumptions. Up to a
Box-Cox transformation, this assumption is reasonable for temperatures. To deal with
precipitations, we introduce pseudo-precipitations which are assumed to be normally
distributed. They correspond to real precipitations if they are positive and are latent
otherwise.

Let B be the number of forecast sources (e.g. the ensembles from several meteo-
rological centers) and Kb the number of members within ensemble b . The members
from an ensemble b for forecasting time t are denoted by (yb ,k ,t )k=1,...,Kb

. They are ob-
tained by perturbing the initial condition of a meteorological simulator at time t − h,
h being the time horizon of the forecast. The real meteorological quantity to be fore-
casted is y e

t . We aim to link the meteorological quantity of interest to the forecast
sources. We make the assumption of exchangeability within an ensemble which leads
to the existence of a latent variable [53] accounting for the shared information between
the members. Moreover, we assume that this latent variable is common to all the en-
sembles and that another common latent variable accounts for the dispersion of the
member. More precisely, the model we propose is for a given time horizon and a given
location: for any b , k , t ,
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εb ,k ,t |V −2
t
� i nd∼ N

�

0,V 2
t
�

�

Ut |V −2
t
� i nd∼ N

�

0,λV 2
t
�

V −2
t

i i d∼ Γ (αΓ ,βΓ )

, (2.20)

where Ut and V 2
t are the corresponding latent variables (forming the bedrock of

the exchangeability property) upon which the ensemble members of a given ensemble
b are conditionally independent. These latent variables Ut and V 2

t are assumed to
be independent across time. The parameters αΓ , βΓ , λ and {αb ,βb ,γb }b∈{0,...,B} are
parameters to be estimated. These parameters are then specific to the considered time
horizon and location. Identifiability constraints impose b0 = c0 = 1. The parameters
are to be interpreted as:

• The difference αb −α0, b > 0 gives the additive bias for the forecasting ensemble
v, to be compared to 0.

• The ratio βb
β0

, b > 0 is the multiplicative bias of the forecasting ensemble b . Since
β0 = 1 for identifiability, the value βb is directly to be compared to 1. Additive
and multiplicative biases may partly compensate one another.

• For parameter γ , the ratio γb
γ0
= γb , b > 0 ( parameter γ0 being fixed to 1) will be

understood as a dispersion bias for the predictors. A ratio greater than 1 can be
interpreted as an over-dispersion of the predicting ensemble b .

• The ratio βΓ
αΓ−1 corresponds to the expected value of V 2

t which rules how far
the quantity to forecast y e

t can occur from the latent variable Ut . It is therefore
expected that this ratio will increase with the time horizon of the forecast, be-
cause ensembles generally become less and less informative when the forecasting
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horizon grows.

The adhoc dependence between Ut and V 2
t as specified by Eq 2.20 greatly facili-

tates inference and forecasting (through the property of Gamma-Normal conjugacy)
and therefore leads to fast algorithms, which is useful in an operational context, where
inference can be conducted within a moving window. Inference relies on an EM al-
gorithm where the Expectation step has a close form for the temperature and requires
stochastic simulation in the Expectation step for the pseudo precipitation.

This method was tested on real watersheds with data provided by Hydro-Québec.
Most results showed that this model which allows us to post-process multi-ensemble
data, led to better probabilistic forecast according to the CRPS score [72]. As an illus-
tration, Figure 2.12 shows the post-processed forecast of the maximal daily tempera-
ture from three forecasting ensembles. On this particular example, the post-processed
forecast manages to make a trade-off between the different ensembles and produces a
probabilistic forecast that covers with high probability the true maximal temperature.
We can also observe that, as expected, the dispersion increases with the time horizon.
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Figure 2.12 – Example of a forecast issued for the daily maximum temperatures of the Manic 2 catch-
ment area with the proposed post-processing method taking NCEP-GEFS, CMC-EPS and ECMWF-
EPS as inputs. Predictive scenarios derived from meteorological forecasts by forecast time horizon
are presented. The maximum daily temperature to be forecast (observed afterward) is indicated by
the black dotted line.

2.2.4.2 A two-regime model for rainfall-runoff simulator (RRS)

From the data we have on watersheds in Québec, provided by Hydro-Québec, and
in France, provided by EDF, we compared the outputs of the RRS (where the actual
temperatures and precipitations are inputted) with the measured water flow. We fre-
quently observed two situations that suggest a model with two regimes: (i) a situation
where the RRS ingests new rainfalls, the link between the RRS output and the water-
flow is subjected to a high level of uncertainty, (ii) a situation where there is no recent
rain event to be inputted in the RRS, the time increments of the observed water flow
and of the outputs of the RRS are very close to each other, the actual error is prop-
agated identically from one time step to the next step. Consequently, the prediction
uncertainty is much smaller. The RRS is a conceptual model which mimics the river



2.2. CONTRIBUTIONS 51

behavior by a system of interconnected reservoirs. Besides the water flow of the river,
internal state variables (such as snowmelt intensity, fraction of the superficial flow in
the whole flow, etc.) are also available and may bring valuable information about the
regimes of the river.

In this subsection, we denote respectively by y e
t and yt the logarithms of actual

water flow observation and of the output of the RRS at day t . We used a logarithm
transformation to make Gaussian distribution assumption acceptable for the data. We
would like our model to properly identify different regimes such as the ones presented
above and to predict which one is adequate for any prediction situation. We propose
to make the conditional distribution of

�

y e
t |yt ,y

e
t−1

�

depend on the sign of a latent
variable denoted by Ut indicating the regime of the river and thus the nature of the
relationship between y e

t , yt and ye
t−1. We assume that such a latent variable follows a

Gaussian distribution, the mean of which is a function of the RRS state variables at the
considered time, Vt . Thus, this model exhibits two regimes that we name regime 0 and
regime 1. The regime is given by the binary random variable St = I{Ut≤0} (where I{A=a}
is the indicator function of the event {A = a}) which says whether the RRS behaves
according to regime 0 or regime 1 at time t . Let Vt denote the vector of state variables
of the RRS at time t and we assume that:

Ut ∼
i .i .d .
N (BT Vt , 1), (2.21)

where the vector B contains unknown parameters to be estimated. We emphasize that
we only assume that the Ut s (hence the St s) are independent conditionally to the state
variables Vt . Hence, the regimes at time t and t + 1 are still dependent since Vt and
Vt+1 are dependent.

We moreover assume that, conditionally on (St = k), (ye |y) behaves according
to an autoregressive model with external inputs (ARX) model given by the following
equation:

y e
t = ak +bT

k yt−r
t + cT

k ye ,t−s
t−1 +σkεt εt ∼

i .i .d .
N (0,1) (2.22)

where ye ,t−s
t−1 = (y e

t−1, y e
t−2, . . . , y e

t−s )
T , yt−r

t = (yt , yt−1, . . . , yt−r )
T and θ =

(θk )k∈{0,1} =
�

ak ,bT
k ,cT

k ,σk
�

k∈{0,1} stands for the set of unknown parameters. The

parameters {ak ,σk}k∈{0,1} and vectors of parameters {bk ,ck}k∈{0,1} are to be estimated
(in addition to the vector B). Whatever the regime k, bk is of size r + 1 and ck is
of size s . Thus, the statistical modeling of the link between the outputs of the RRS,
yt , yt−1, . . ., and the actual water flow, y e

t , y e
t−1, . . ., has two regimes (St = 0 or St = 1)

which depend on the latent variable Ut governed by the known state variables Vt .
The inference is conducted through an EM algorithm with exact Expectation steps.

A model selection relying on a Bayesian Information Criterion (BIC) [153] is used for
selecting the indices s and r in Equation (2.22) and for selecting the state variables to
keep in Equation (2.21).

This model was inferred on 11 French watersheds and 4 Québec watersheds. For
most watersheds, from the interpretation of the parameter estimates, we identify:

• a regime (by convention S = 0) in which approximately only the time increments
of y and ye are considered (i.e. b10 '−b20 and c10 ' 1 in Equation (2.22)),

• a regime (by convention S = 1) in which the predicted water flow depends more
on the RRS outputs (c11 < c10 and b11 > b10), approximately only the errors
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(ye − y) matter (b11 ' 1 and c11 ' −b21) and with a higher uncertainty level
(σ1 >σ0).

We also identified for the different watersheds which state variables are responsible for
being in a state or the other. As an illustration, we provide an illustration in Figure
2.13 of the flow prediction on the Dordogne watershed at Bort. We compare the prob-
abilistic forecast we obtain with the two-regime model with a one-regime model (same
model as in Equation (2.22) without the k index, i.e. without the dependence on the
state variables) and with an operational prediction method used by EDF. We obtain a
water flow prediction closer to the actual one. We notice that the probability for being
in regime 1 rather than 0 increased when there was a variation in the water flow and
then vanished when the water flow goes back to steady state.
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Figure 2.13 – Water flow prediction on the Dordogne watershed at Bort. The proportion of the
dark gray filling of the upper right box corresponds to the predicted probability of being in the high
uncertainty (flood) regime (S = 1). The vertical line corresponds to the date until which one has
access to the water flow observations (i.e. the forecasting day). The prediction targets the water flow
observations after that day.

2.3 PERSPECTIVES

My perspectives are mainly devoted to pursue the investigation regarding the discrep-
ancy function and to extent some classical techniques of UQ for stochastic simulators.
In the different perspectives, the question of the design of field or numerical experi-
ment is at stake but with respect to different objectives. Some perspectives are already
ongoing works while others are longer-term projects.

2.3.1 Discrepancy

When confronting field data to a simulation, a systematic error between the real phe-
nomenon and the simulator is usually taken into account as in Equation 2.5. To model
an unknown function, the Gaussian process assumption makes sense. Under this as-
sumption, running a variable selection of input variables in the vector xe will help to
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detect which input variables significantly impact the simulator. In [JP10] and [P3],
under a simplifying assumption on the simulator, we proposed Bayesian testing proce-
dure to decide whether the discrepancy is required or not. The extension of the testing
procedure when removing this assumption is a natural perspective. Moreover, other
models than a Gaussian process for the discrepancy could be tested. When the simula-
tor is the solution of differential equations (often available as a numerical solver of the
differential equations), a discrepancy can be embedded directly within the equations
which may make extrapolation possible.

Screening the model discrepancy. Analyzing the discrepancy should help to under-
stand to what extent the simulator is reliable. In particular, we focus on determining
whether some variables are active or inert in the discrepancy function, which is of ma-
jor interest since it indicates which input variables are correctly taken into account in
the simulator. Therefore, this could give some leads to improve the simulator and help
to determine whether extrapolation is safe or not with respect to a specific input. The
major difficulty in selecting the active variables in the discrepancy function is that the
discrepancy function is not directly observed and confounding effects with the calibra-
tion of the simulator can occur.

We consider this model for the discrepancy: δ ∼ GP (0,σ2
δ

Cδ(·, ·)) where Cδ is
restricted to the class of power exponential kernels:

Cδ(x,x′;α,ψ) =
p
∏

i=1

exp(−|xi − x ′i |
α/ψi )

which encompasses the exponential and the Gaussian kernels. The parameter α is usu-
ally chosen by the user and not estimated from data. The parameters ψi ∈ (0;+∞)
are named the range parameters and correspond respectively to the input variables xi .
Note that if ψi →+∞, the corresponding input variable does not have any impact on
the discrepancy and can be deemed as inert. Another parametrization is used in [111]
for the range parameters which plunges the range parameters into the unit interval
[0,1]. It is given by ρ= exp(−2/ψ) which leads to the correlation kernel:

Cδ(x,x′;α,ρ) =
p
∏

i=1

ρ
2α|xi−x ′i |

α

i . (2.23)

Then an inert input variable corresponds to ρi = 1. In [111], a spike and slab prior
[67] is set on the range parameters ρi :

π(ρ) =
p
∏

i=1

�

τI[0,1](ρi )+ (1−τ)d1(ρi )
�

(2.24)

where τ ∈ [0,1] is the prior probability that an input variable is active (common to all
i ’s) and d1(·) is a Dirac mass at 1. The prior in (2.24) can be obtained by stating that

π(ρ | γ ) =
p
∏

i=1

�

γi I[0,1](ρi )+ (1− γi ) d1(ρi )
�

π(γ ) =
p
∏

i=1

τγi (1−τ)1−γi

(2.25)
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Figure 2.14 – Beta distribution in the mixture of the smooth spike and slab prior for α= 50.

and then marginalizing over γ . In [150], the authors use (2.25) and devise MCMC
schemes to sample from the joint posterior ρ,γ | ye for fixed τ, which makes perform-
ing the screening selection exercise straightforward — all the relevant information is
in the posterior distribution of γ . Note that the contribution of [111] is concerned
with the emulation by a GP of a simulator and the contribution of [150] deals with
GP regression. None of them tackles the variable selection in the discrepancy function
when the calibration of the simulator may have to be conducted jointly.

Our proposition is to take a smooth spike and slab prior as:

π(ρ | γ ) =
p
∏

i=1

[γi Be(ρi | 1,1)+ (1− γi ) Be(ρi | αi , 1)] (2.26)

where Be(· | α,β) is the Beta density with positive shape parameters α andβ. In Equa-
tion (2.26), αi is a large value, typically larger than 50. Thus, for all input dimensions,
the prior distribution is a mixture of a uniform distribution (Be(· | 1,1)) which may cor-
respond to an active input and of a distribution highly concentrated around 1 (instead
of being a Dirac mass at 1 as in the discrete spike and slab) corresponding to an inert
input. The two parts of the prior are depicted in Figure 2.14. We have the intuition
that as αi →+∞, the resulting inference approaches the one obtained via the discrete
spike and slab prior, so that this construction can be viewed as a relaxation technique
to facilitate the sampling. By doing so, the prior distribution is absolutely continuous
with respect to Lebesgue measure which is not the case with the discrete spike and slab.

The choice of the vector γ ∈ {0,1}p leads to 2p models in competition differing
only on the prior distribution for ρ. To determine which are the active or inert vari-
ables, we need to compute the posterior distribution for each model. These posterior
distributions are obtained up to a constant by computing the Bayes factors of each
competing model to the full model, γ = 1, which we denote by

Bγ =
m(ye | γ )
m(ye | 1)

, (2.27)

where m(ye | γ ) = E(`(ρ,η;ye ) π(ρ,η | γ )) with `(ρ,η | ye ) the likelihood of the
model defined by Equations (2.4) and (2.5), and η the other parameters than the range
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parameters ρ (it includes the calibration parameter θ and the variance parameters σ2
ε

and σ2
δ

).
Since the parameter spaces of the models in competition are the same, we can esti-

mate Bγ by using a version of importance sampling [36] as an expectation underM1

Bγ =E1

�

`(ρ,η;ye ) π(ρ,η | γ )
`(ρ,η;ye , ) π(ρ,η | 1)

�

=E1

�

π(ρ | γ )
π(ρ | 1)

�

, (2.28)

As the only difference between two models is the prior distribution on ρ the expec-
tation simplifies. All the Bayes factor can be estimated from a unique MCMC sample
from the modelM1: if {(ρ(k),η(k)), k = 1, . . . , M}, is a sample from the posterior dis-
tribution of the unknowns for γ = 1, then

Bγ ≈
1
M

M
∑

k=1

π(ρ(k) | γ ) .

Therefore, the posterior probability for any input variable to be active in the discrep-
ancy is computed as:

P(xk active in δ | ye ) =
∑

γ : γk=1
P(Mγ | y

e ) . (2.29)

We applied the developed method to the PV simulator detailed in [JP2] and recalled
in Subsection 2.2.2.1. We considered 5 input variables (the four variables which are
taken into account in the simulator and another measure of the temperature which is
available in the field experiments). As Figure 2.15 illustrates, the posterior probabilities
for most of the variables to be active in the discrepancy are high except for the two
temperatures. Nevertheless, at least one of them should be incorporated within the
discrepancy since the probability for either a temperature or the other is high. This
work is in collaboration with Rui Paulo and Anabel Forte and should be submitted
soon for publication [IP1]. It assumes that the simulator is cheap or that we are already
working with a surrogate of the simulator. But it should be extended to the case where
an emulator has to be used instead of the simulator.

Testing discrepancy. The natural extension of [JP10] and [P3] is to remove the lin-
ear assumption of the simulator with respect to the calibration parameter θ. If the
simulator is not linear, both methods can still be used with a linear surrogate of the
simulator. However, the validation which is done by deciding whether the discrep-
ancy should be or not incorporated concerns the linear surrogate and not directly the
complex simulator. Removing the linear assumption will lead to additional computa-
tional burden, since it will not be possible to integrate out the calibration parameter
θ. These methods could also be used to decide between different types of discrepancy.
It could be different Gaussian processes with different correlation kernels, a different
parametric expression or different constraints on the discrepancy [25].

The mixture model in [P3] could also allow us to detect different subregions in
the input domain with different kinds of discrepancy. This could be an alternative to
the Bayesian treed calibration [97] which gives a partition of the input space, based
on a binary tree partitioning, into subregions where different calibration models (as
in Equation (2.6)) are fitted. Another alternative for considering different forms of
discrepancy depending on the input space was the statistical model proposed in [JP9]
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Figure 2.15 – Posterior probabilities distribution of the activeness of variables in the discrepancy
function. The variables are t time, Ig global solar irradiation, Id diffuse solar irradiation, Te and
Tp temperature at the ground level and temperature on the panel. The last boxplot correspond
to the posterior probability distribution that at least one of the two temperatures is active in the
discrepancy.

and recalled in Subsection 2.2.4.2 in the particular context of dynamic observations and
simulations. These questions in spite of their difficulty are major since it makes sense
to assume that different regimes do exist in the physical process and the simulator may
not have the same precision for any of these regimes. To some extent, this question
relates to extrapolation of the simulator.

Embedded discrepancy. In the Kennedy and O’Hagan calibration framework [93],
the discrepancy is additive in order to model the mismatch between the simulator and
field data. An alternative is to embed the discrepancy within the simulator. This makes
sense when the simulator is derived from ordinary or partial differential equations
(ODE or PDE). It consists in doing a stochastic relaxation of the differential equa-
tion(s) which turns the ODE into Stochastic Differential Equations (SDE). We explore
this idea for a mass-spring-damper system as in [132]. The position of the mass at time t
denoted by f R(t ) is considered as the physical phenomenon of interest and is assumed
to follow this ODE:

m
..

f R+ c(T )
.

f R+ k f R = 0 with
.

T = c(T )
.

f R
2
− 1
τ
(T −T0)

c(T ) = exp
�T0

T
− 1

�

, f R(0) = 4,
.

f R(0) = 0, T0 = 20, k = 3, τ = 1.

The mass m and the time t are the input variables. The “field data” ye are generated
under this ODE at times 0,1,2, . . . 8 for a mass m = 1, then xe = (m = 1, t = 0, . . . , 8). A
Gaussian white noise is added, its variance is 10−4. The simulator at hand f is assumed
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to come from a simplified version of this ODE where c the damper effect is constant:

m
..
f + c

.
f + k f = 0, f (0) = 4

.
f (0) = 0. (2.30)

(2.31)

Then, the parameters to calibrate are θ = (k , c) the spring constant and a constant
damper effect from the data (xe ,ye ). The simplification of the simulator introduces a
mismatch between the field data and the outputs of the simulator, especially in an ex-
trapolative setting where the goal is to predict the position (or the speed) of the mass
for a larger mass than the one in the field data. If the goal is to predict the position
of the mass at the same times t = 0, . . . , 8 and for m = 2, we compare four ways of
calibrating the simulator. The first calibration consists in considering Equation (2.6)
with no discrepancy (δ = 0) and the true noise variance known. The second calibra-
tion consists in relaxing, in the first calibration, the known variance assumption. It
actually corresponds to model δ as a Gaussian white noise. A third calibration is the
method proposed in [132] where a distribution is set on c and the parameters of this
distribution are calibrated. A lognormal distribution is set i.e. c ∼ logN (µc ,σ2

c ) and
the calibration parameters are (µc ,σ2

c , k). The fourth and last calibration relies on a
transformation of Equation (2.30) into an SDE. It results from a stochastic perturba-
tion on the parameter c for which a practitioner suspects the constant assumption. The
stochastic Perturbation is c = c0+σcξt where ξt ∼N (0,1). The simulator f is then a
solution of

.
f = d f

d t and we have:

d
.
f =

c
m

.
f d t +

k
m

xd t =
c0+σcξt

m

.
f d t +

k
m

xd t

d
.
f =

c0

m

.
f d t +

k
m

xd t +
σc

m

.
f dWt

where we denote dWt = ξt d t to make the connection with SDE. The value of σc is
fixed to 0.5.

In Figure 2.16, we plot the prediction performances for mass m = 2 of the four
calibrations. The predictions are compared with data generated under the true system.
The first calibration leads to predictions with really low uncertainties which do not
cover the true data. This is really dangerous in practice since it gives the illusion of
precision with false predictions. The simple relaxation on the noise gives rather good
results. The relaxation proposed by [132] has the desirable feature to increase the cred-
ible bands. However the posterior prediction seems rather odd in comparison with the
physical behavior of the system. The SDE relaxation (Calibration 4) is promising. All
the points have a good validation metric γ and the uncertainties are lower than with
the previous relaxation. Moreover, the system behavior seems to be more physically
grounded. This was obtained for a good value of σc . It is still an open question to tune
this parameter properly. A solution could be to use some cross validation techniques.

In the example, the stochastic relaxation is rather natural since the ODE is linear
with respect with the parameter c which is relaxed. Another embedding of the discrep-
ancy considers the Voight’s failure model [169], where the stochastic relaxation could
be done by adding another layer of differentiation. This is a joint work [IP2] with E.
Bruce Pitman. From these two examples, we aim to derive general guidance for embed-
ding discrepancy in the simulator. This will enable extrapolation in two ways: outside
the domain of field observation and on different outputs (quantity of interest) of the
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Figure 2.16 – Top to down, results for calibrations 1 to 4 as described in the text. On the left-hand-
side, predictions for the position of the mass (m = 2). The predictions correspond to the simulator run
with parameters sampled in their posterior distribution. Red points correspond to data generated
under the true physical system. On the right-hand-side, computations of the validation metric γ (see
Equation (2.7)) for the nine data points generated under the true system.
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simulator than the one available in field observation. The connections with similar
ideas in [11] and in [126] need to be done.

2.3.2 Stochastic Simulator

Stochastic simulators are becoming more and more popular in the last decade. The
stochasticity within the simulator is either a consequence of stochastic approximations
in the simulator computations such as Monte Carlo methods or accounts for the nat-
ural stochasticity of the real world process. Most works in UQ make the assumption
that the simulator is deterministic and the stochasticity is a result of uncertainties on
the input for instance. They need to be extended to deal with stochastic simulators.
In the recent years, some works contributed to this area. It seems then important to
write a state-of-the-art review of the literature which allows us to identify new research
opportunity in this field [P1]. To illustrate the review paper, I dealt with a simula-
tor modeling the concentration of oxygen in the Ocean. The simulator is stochas-
tic since a non-linear PDE is approximated by a Feynman–Kac representation [84]. I
considered emulation and calibration of this simulator relying on homoskedastic and
heteroskedastic Gaussian Processes [15, 16]. In heteroskedastic Gaussian Process, the
mean and the variance of the simulator are both approximated by Gaussian Processes.
The R codes are available at: https://github.com/Demiperimetre/Ocean.

2.3.3 New Developments for Case Studies

In my contributions, I worked with different simulators. In particular two of them,
NitroScape and WALTer, both described in Section 2.2.1, are highly complex and lead
to challenging questions. They have in common to be time consuming to run and to
have high dimensional inputs and outputs.

Perspectives for NitroScape. NitroScape results from a coupling of 4 simulators
iteratively run at the day level. Although some works do exist on building emulators
for coupled simulators [100, 119, 118], dealing with a daily-iteration of the simulators
may jeopardize the efficiency of these approaches. Then, adapting these emulations is
an issue for further work on this simulator including calibration.

Perspectives for WALTer. The outputs of WALTer are comprehensive tillering and
Grean Area Index (GAI) dynamics which have to be compared with scarce field data
when it comes to calibration. Selecting what features of the outputted dynamics may
be collected in field experiments and are sufficient for calibration is an ongoing perspec-
tive. Moreover, WALTer is an essential tool for investigating the behavior of a mixture
of two wheat varieties sown in the same plot. In this study, the two wheat varieties
are assumed to have different phenotype such as their respective height. The quantity
of interest is the overyielding that is to say the comparison between the mean number
of ears for a mixture of varieties versus the average of mean numbers for the two va-
rieties grown separately. First, the goal will be to realize a sensitivity analysis on this
overyielding with respect to the phenotype in order to detect which of them have par-
ticular behavior when they are mixed. Since the overyielding is computed from three
outputs of WALTer, designing an appropriate DoNE is an issue. Second, we will focus
on the best composition of the mixture to optimize the yield.

https://github.com/Demiperimetre/Ocean
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2.3.4 Designs of Experiments

Since data are scarce because of experimental cost for field data and computation time
for simulator runs, choosing them properly is important. This choice should be related
to the intented goal. Usually, a first static design is needed and the next experiments or
runs may be made sequentially conditionally to the obtained data. Hereafter, I expose
particular contexts where some contributions would be relevant.

DoNE for calibration of stochastic simulator. A natural extension of the sequen-
tial design for calibration [JP6] is to extend this work to stochastic simulator where
the EI criterion (see Equation (2.13)) must take into account the heteroskedasticity
of the emulator. When choosing sequential design for stochastic simulator, there is a
trade-off between exploration and replication [16]. For the calibration purpose, this
should be also done by integrating weights derived from the posterior distribution of
the calibration parameters in their domain.

DoFE for calibration and validation. In most papers on calibration and validation,
the DoFE is assumed to be given. However, if new experiments are affordable or if
data collection is to be done while the simulator is already available, the framework
of Bayesian experimental design [33] is of interest. The first steps are to translate the
calibration and validation objectives into a utility function to be optimized to obtain
the DoFE. Calibration and validation objectives are not equivalent, hence the utility
function should be a trade-off of these objectives. Provided that several batches of
field experiment are possible, another solution is to iteratively run batch experiments
for alternatively enhancing the calibration precision and assessing the validity of the
simulator.

The simulator may be actually valid only on some subregions of the input variable
domain. Delimiting this domain is then of major interest and the associated question
is to refine the DoFE and the DoNE to improve this delimitation. This could be done
by using the mixture model proposed in [P3]. When the mixture model in Equation
(2.2.3) gives posterior probabilities such that P(ik ∼M1|ye ) ≈ P(ik ∼M0|ye ) ≈ 1/2
(notation ik ∼ M j ( j ∈ {0,1} means that the observation y e

ik
was generated under

ModelM j ) for some observations ik ∈ {1, . . . , ne}, it means that there is too little in-
formation in the data to state or not the validity of the simulator in the neighborhoods
of xe

ik
s. Therefore running new field experiments in these neighborhoods could help

to understand more precisely the departure of the simulator from the physical process.

Extrapolation. Furthermore, if the goal is to extrapolate from the simulator outside
the domain of input variables x where no physical experiment is doable, the parametric
uncertainty on the calibration parameter θ could be assessed from different choices of
design. For instance, let us consider a ball drop experiment [41]. The behavior of a
ball drop is modeled by the ODE:

d 2h
d t 2
= g −

Cd

2
·

3ρai r

4ρbal l R
·
�d h

d t

�2

, (2.32)

with initial condition h(0) = h0, where h is the height of the ball, g is the gravity con-
stant, Cd a coefficient for air resistance and ρai r , ρbal l the respective densities of air
and of the ball. The scalar quantity of interest is the drop time i.e. the time td when
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h(td ) = 0. The simulator f (x = h0,θ = (g ,Cd ,ρai r ,ρbal l ) gives the drop time when
the initial dropping height is h0 and for a choice of physical parameters θ. The goal
may be to use the simulator to predict the dropping time of a ball from a big height (let
say h0 = 200m) although the field experiments must be run from smaller heights with
the constraint the higher, the more difficult. In this example, by doing a sensitivity
analysis, we can show that only the parameter g matters if h0 is small while when h0
is large such as in the extrapolative setting, the three other parameters are important.
Therefore, calibrating the parameters with a DoFE with too small heights will not
reduce the parametric uncertainty on (Cd ,ρai r ,ρbal l ) and the prediction uncertainty
will be large. Then the goal is to find a trade-off between the number of experiments
and the initial heights in the DoFE which enables a sufficient reduction of the predic-
tion uncertainty in the extrapolative setting. Using a linear approximation in θ of the
simulator

f (h0,θ) =β0(h0)+
P
∑

j=1

β j (h0)θ j

may be a way to evaluate the reduction of parametric uncertainty provided by a par-
ticular DoFE.





3NETWORK ANALYSES

RÉSUMÉ DU CHAPITRE EN FRANÇAIS

Un réseau permet de représenter des données d’interaction. Il correspond à un graphe
constitué d’un ensemble de nœuds et d’arêtes indiquant quelles paires de nœuds sont en
interaction. L’information d’interaction peut être plus riche qu’une distinction binaire
entre interaction ou non. Le cas échéant, le réseau est dit valué si l’on a, par exemple,
un comptage sur le nombre d’interactions observées ou une force d’interaction qui
est quantifiée. Un cas particulier de réseau est un réseau bipartite qui représente les
interactions entre deux ensembles de nœuds. Les interactions peuvent avoir lieu entre
les nœuds des deux ensembles mais pas au sein des ensembles.

Dans mes contributions, j’ai considéré les réseaux dans trois contextes différents : i)
le réseau est une des entrées d’un modèle complexe, le but étant de quantifier l’influence
de sa topologie sur les sorties du modèle [JP12]; ii) le réseau est latent et il influence la
dynamique d’une épidémie, le but étant alors d’inférer le réseau à partir d’observations
de la dynamique [JP1]; iii) le réseau est observé, le but étant d’étudier sa structure en
regroupant les nœuds ayant des profils de connexion similaires [JP8, JP11, JP13, JP5,
P6, P2].

Le réseau a une importance primordiale dans des modèles de métapopulation avec
extinction et colonisation qui sont équivalents à des modèles SIS (Susceptible Infecté
Susceptible) en épidémiologie. Les colonisations ou les contaminations ne sont sup-
posées possibles qu’au travers de contacts donnés par le réseau. Dans [JP12], nous
avons étudié dans un modèle de métapopulation stochastique, l’influence de la topolo-
gie du réseau sur des indicateurs tels que la probabilité de persistance d’une population
et l’occupation moyenne au bout d’un nombre fini de générations. Lorsque la persis-
tance était menacée, nous avons mis en évidence que les topologies donnant lieu à des
nœuds très connectés résistaient mieux que celles ayant des nœuds avec des connexions
plus équilibrées tandis que ces dernières favorisaient une occupation moyenne plus im-
portante lorsqu’il y a avait une grande probabilité de persistance.

Dans des modèles similaires type SIS, nous avons proposé dans [JP1] une inférence
efficace du réseau de contact entre individus à partir des seules données de statuts des
individus (infecté ou non) au cours du temps. Cette inférence du réseau est dérivée de
probabilités calculées pour chaque arête d’avoir été source d’infection au moins une
fois au cours de la fenêtre d’observation. Ces calculs s’appuient sur une utilisation
du théorème arbre matrice qui permet de sommer efficacement sur tous les arbres de
contamination possibles.

Les contributions concernant le regroupement des nœuds d’un réseau observé à
partir des profils de connexion reposent sur des extensions des modèles à blocs stochas-
tiques (SBM : Stochastic Block Model pour les réseaux simples et LBM : Latent Block
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Model pour les réseaux bipartites). Ces modèles considèrent que l’hétérogénéité des
connexions dépend de variables latentes associées aux nœuds. Un paramètre de con-
nectivité est alors associé à chaque paire de variables latentes. Retrouver les variables
latentes donne une classification des nœuds (leur appartenance aux différents blocs) et
l’inférence des paramètres de connectivité permet de comprendre la structure du réseau.
Nous nous sommes intéressés à différents types de réseaux multicouches à savoir mul-
tiplexes [JP8, JP11], multiniveaux [P2] et multipartites [P6]. Nous avons obtenu
l’identifiabilité des extensions multiplexes et multiniveaux. Pour ces trois extensions,
nous avons adapté l’inférence par algorithme variationnel espérance-maximisation
(VEM) et la sélection du nombre de blocs latents par un critère de vraisemblance pénal-
isée. L’extension multiplexe a été motivée par des données en sociologie sur des interac-
tions entre chercheurs pouvant être directes ou à travers leurs institutions. L’extension
multiniveau est également motivée par des données en sociologie, concernant les in-
teractions entre des commerciaux sur une foire de programmes télévisés pour lesquels
on dispose également des contacts entre leurs entreprises. L’extension multipartite a
été principalement motivée par des données en écologie pour pouvoir traiter conjoin-
tement des interactions entre des plantes et plusieurs types de visiteurs (pollinisateurs,
fourmis, oiseaux) et des données en ethnobiologie où l’on s’intéresse à la circulation
de semences entre fermiers et aux inventaires des variétés cultivées par ceux-ci. Dans
[JP5], nous avons traité des données manquantes dans les réseaux d’interaction. Si ces
données sont manquantes au hasard, adapter l’inférence est simple. Par contre, si ce
n’est pas le cas, il est indispensable de prendre en compte la stratégie d’échantillonnage
dans l’inférence afin d’obtenir des estimations non biaisées des modèles à blocs stochas-
tiques.

Dans mes perspectives, je compte poursuivre mes travaux sur les inférences de
réseau intervenant dans des modèles dynamiques. L’inférence pourra se limiter à des
caractéristiques résumées du réseau si les observations sont trop partielles. Elle pourra
aussi intégrer des données plus complexes telles que des données génétiques pour les
différentes sous-populations d’une métapopulation. L’étude de l’inférence des modèles
à blocs stochastiques à partir de réseaux partiellement observés pourra également être
poursuivie notamment dans le cadre des réseaux écologiques d’interaction. En effet,
le recueil des données présente un cadre quelque peu différent où les interactions ob-
servées sont fiables mais une incertitude pèse sur les interactions non observées. Cette
absence d’observation peut résulter d’un effort d’échantillonnage trop faible plutôt que
d’une cause biologique. Grâce à des mesures de la complétude d’échantillonnage, la
modélisation du processus d’observation pourrait corriger l’inférence, ceci pour des
données provenant de campagnes scientifiques mais aussi pour des données issues des
sciences participatives. Également en écologie, faire le lien entre un indicateur tel que
la robustesse qui mesure la capacité du réseau à supporter des perturbations et la struc-
ture du modèle en blocs stochastiques est une perspective intéressante puisqu’elle per-
mettrait de compenser des effets d’échantillonnage et faciliterait des comparaisons de
robustesse entre différents réseaux échantillonnés dans des conditions différentes.
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In my work, I have considered networks in three distinct contexts: i) a network is
an input of a complex model and the goal is to assess to what extent the topology of the
network impacts the outputs [JP12]; ii) the network is not observed but latent, the goal
is to infer it from data whose conditional dependencies rely on the network [JP1]; iii)
the network is observed and the goal is to unravel its structure by clustering its node
according to their connections [JP8, JP11, JP13, JP5, P6, P2]. Before presenting the
three contexts and the related contributions, we provide the common notations and
terminology.

3.1 NOTATIONS AND TERMINOLOGY

A network is a way to represent interaction data. It corresponds to the mathematical
object named graph. A network is then given as a collection of two sets: a set of nodes
N (a.k.a. vertices) generally numbered from 1 to n (i.e. N = {1, . . . , n}) and a set of
edges (a.k.a. links, ties, connections) E representing the subset of pairs of nodes (a.k.a
dyads) which are linked. The nodes are the individuals which may be in interaction and
the edges are the interactions which do exist. We have the inclusion E ⊂N ×N . The
edges may be directed/oriented or not depending on the reciprocity of the interaction.
For a directed network, we will use the convention (i , j ) ∈ E means that there is a
link from i to j . Moreover, an edge may carry more information than simply a binary
existence / non-existence of an interaction. It may also contain information on the
strength or frequency of this interaction. In this case, besides the set of edges E , a
corresponding set of values is provided. Such a network is called a valued network;
otherwise a binary network.

A common representation for a network is as an adjacency matrix denoted by A as
illustrated in Figure 3.1 for a binary network. If (i , j ) ∈ E , Ai j = 1, otherwise Ai j = 0.
Usually, the network does not have any self-loop (a node is not connected to itself)
then the diagonal is a null vector. The adjacency matrix may be either symmetric
if the network is undirected or non-symmetric otherwise. If the network is valued,
the matrix A may contain the strength of interaction between nodes instead of 0/1.
A particular kind of network is bipartite network when there are two sets of nodes
which may be in interaction between sets but no interaction occurs within a set. They
are particularly relevant in ecology for representing plant-pollinator interactions for
example. In this case, the network is rather represented by an incidence matrix which
is rectangular and has n rows (size of the first set of nodes; plants e.g.) and m columns
(size of the second set of nodes; pollinators e.g.). Figure 3.2 displays an example of a
bipartite network and the corresponding incidence matrix. The adjacency matrix of a

bipartite network is recovered from the incidence matrix as A=
�

0 B
BT 0

�

.

A network is often summarized by statistics which are computed at the node level
or at the full network level [96]. A classical statistic at the node level is the degree that
is to say the number of edges involving a given node. It is computed as di =

∑

j Ai j if
the network is undirected, otherwise indegree and outdegree are to be defined.
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A=









0 1 0 1
1 0 1 1
0 1 0 0
1 1 0 0









1

2

3

4

Figure 3.1 – Adjacency matrix and corresponding representation of an undirected binary network.

B =





1 1 1 1 0
0 0 1 1 1
0 0 0 0 1





R1 R2 R3

C1 C2 C3 C4 C5

Figure 3.2 – Incidence matrix and corresponding representation of a bipartite binary network. R
(respectively C) stands for the nodes corresponding to the rows (respectively columns) of the incidence
matrix B.
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3.2 INFLUENCE OF THE NETWORK IN COMPLEX PROCESSES

Dynamic extinction colonization models (also called contact processes) are widely
studied in epidemiology and in metapopulation theory. Contacts are usually assumed
to be possible only through a network of connected patches. This network accounts
for a spatial landscape or a social organization of interactions. To study the persistence
of a metapopulation in such a model, several papers have used deterministic models
where the evolution is described by differential equations [110, 82, 158]. These models
are grounded on an asymptotic approximation in the number of patches. The same
models are used in epidemiology (SIS: Susceptible Infected Susceptible model). More
recently, some studies have dealt with the stochastic effect due to a finite and limited
number of patches/actors. Chakrabarti el al. [32] have proposed an approximation
in the stochastic model which leads to conclusions similar to the ones obtained with
deterministic models. Gilarranz and Bascompte [69] have shown by simulations the
impact of stochasticity due to a limited number of patches and they have underscored
the differences with the results obtained with deterministic models when comparing
the ability of different networks to conserve a metapopulation. However, their results
depend only on the ratio of the extinction rate to the colonization rate which is not
relevant in a stochastic model. Our contribution [JP12] was motivated by the charac-
terization of a seed circulation network among farmers. This question has arisen in the
study of the Réseau Semences Paysannes, an emergent French farmers’ organisation.

Dynamic extinction-colonization model. The dynamic model under study de-
scribes the presence or absence of a crop variety on n different farms (patches ac-
cording to metapopulation vocabulary) during a discrete time evolution process. This
metapopulation is identified with an undirected network G with n nodes (patches or
farms) and adjacency matrix A = [Ai j ]i , j where Ai j = 1 if patches i and j are con-
nected (i ∼ j ) and 0 otherwise. We further denote by Z t

i the occupancy of patch i
(i = 1 . . . n) at time t , namely Z t

i = 1 if patch i is occupied at time t and 0 otherwise.
The vector Z t = [Z t

i ]i depicts the composition of the whole metapopulation at time
t . A time step corresponds to a generation of culture. Between two generations, two
events may occur: extinction and colonization with respective rates e and c . Within
each time step, extinction events first take place and occur in occupied patches inde-
pendently of the others, with a probability e , supposed to be constant over patches
and time. Colonizations events then take place and are only possible between patches
linked according to the static relational network G. An empty patch may be colonized
by an occupied patch with a probability c . This probability is also assumed constant
over linked patches and time steps. Thus, the probability that the patch i , if empty at
generation t , is colonized between generations t and t + 1 is:

P(Z t
i = 1|Z t−1

i = 0; (Z t−1
j ) j 6=i ) = 1− (1− c)oi ,t−1 (3.1)

where oi ,t =
∑

j ai j Z
t
j is the number of its occupied neighbours at generation t . This

model is similar to the one proposed in [69] and also to the epidemic model SIS used in
[32] where the nodes are the individuals, the two possible states for an individual are
susceptible or infected and the network depicts the potential contact between individ-
uals.

The stochastic process (Zt )t∈N is a discrete time Markov chain with 2n possible
states. As given in [51], the matrices describing the colonization C and the extinction
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E can be computed and the transition matrix of (Zt )t∈N is obtained as the product of
these two matrices: M = E ·C . This Markov chain is irreducible and aperiodic provided
that the adjacency matrix A of the social network has only one connected component.
If e > 0, there is a unique stationary distribution which is the absorbing state where all
patches are empty meaning that the crop is extinct. The extinction time T0 = inf{t >
0,#Zt = 0}, where #Zt =

∑n
i=1 Z t

i is the number of occupied patches at time t , is
such that P(T0 < ∞) = 1. Contrary to a deterministic model, we cannot separate
parameter settings which lead to extinction from the others. Therefore, we choose a
number of generations T and we consider the following indicators to characterize the
persistence: the probability of persistence P(T0 > T ) at generation T and the mean
number of occupied patches E(#ZT ) at generation T . They can be computed by exact
computation from the transition matrix provided that n is not too large (n ∼< 10).
Otherwise, several simulations are run to estimate them.

Analysis of the dynamic model. Put in the context of UQ, the dynamic extinction
colonization model is a stochastic simulator which depends on parameters e , c and G.
We want to conduct a sensitivity analysis with respect to two specific scalar outputs:
P(T0 > T ) and E(#ZT ). Since the input G is the contact network, it needs to be char-
acterized by scalar or categorical variables. We choose to describe the network by its
density or equivalently by its number of edges and its topology which is the way of
distributing edges among nodes. We only consider networks with the constraint of
a unique connected component. As illustrated in Figure 3.3, five contrasted topolo-
gies are compared: i) Erdős-Rényi [61] topology where the edges are drawn uniformly
and independently among the set of possible edges, ii) community network simulated
under an Stochastic Block Model (SBM) [131] with equal size communities having a
larger probability of connection within a community than between communities, iii)
lattice network where the degree of the nodes are chosen as homogeneous as possible,
iv) and v) a preferential attachment topology [2] leading to a high heterogeneity of de-
grees. In the preferential attachment topology, the nodes are added sequentially. At
each step, a single node is added and is connected to the nodes already in the network
with probability

P(connection to node k)∝ d b
k ,

where the power b is chosen in order to tune the strength of the preferential attach-
ment.

The sensitivity analysis of the dynamic extinction colonization model is performed
through an analysis of variance model with respect to the four inputs: e , c , the number
of edges ne and the topology. The three first parameters are discretized in three levels
such that we explore a diversity of situations ranging from likely persistence to likely
extinction in T generations. The topology is chosen among the five ones described
above. The comparison based on E(#Z100) has shown an inversion in the ranking of
the topologies which was similar to the one noticed by [69]. On the one hand, when
the combination of values of e , c and d ensured persistence with a high probability,
the best topologies were those with a better balance in degree distribution such as the
lattice, ER and community topologies. However, although the difference in mean was
found significant, the order of magnitude of this difference was only of a few patches
(≈ 5) for n = 100 patches. On the other hand, the topologies leading to some very con-
nected (hub) such as the preferential attachment topologies (especially when the power
parameter is set at 3) maximized the number of occupied patches when the persistence
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Figure 3.3 – Simulation of networks with 100 nodes and 247 edges according to Erdős-Rényi model
(A), community model (B), lattice model (C), preferential attachment model with power 1 (D) and
power 3 (E). The size of a node is proportional to its degree.

in the system is threatened in 100 generations. In that case, the differences were more
contrasted between topologies as illustrated in Figure 3.4. Different scenarios in the
context of the Réseau Semences Paysannes are also explored in [JP12].

Figure 3.4 – Probability of persistence (left) and mean number of occupied patches (right), in varying
t generations (based on 20 replications of the network for a given topology) for n = 100, c = 0.01,
e = 0.25 and ne = 30%×n(n−1)/2. COM: community network, ER: Erdős-Rényi network, LAT:
Lattice network, PA1: preferential attachment network with power 1, PA3: preferential attachment
with power 3.
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3.3 INFERENCE OF NETWORKS

Assuming a similar dynamic model as in [JP12] presented in the previous section, the
question could be to infer the contact network from the binary status of individuals ob-
served throughout time (occupied / empty in a metapopulation context or susceptible
/ infected in an epidemic context). We proposed in [JP1] to compute the probability
for each edge to be part of the contact network by using the matrix tree theorem on
the set of vertices made of the individual status at all times. This leads to a cheap com-
putational complexity of order O (mn2), where n is the number of nodes and m the
length of the time series. The efficiency is demonstrated on synthetic examples and
two applications on real datasets concerned with seed choices by farmers in India and
a measles outbreak are dealt with in the paper.

Dynamic model. The dynamic model here has the same extinction (or curation)
process as the one defined in 3.2, independent extinction with same probability e along
time. A first slight difference is that, in this model, colonization only happens if the
node was empty at the previous generation. In the model defined in Section 3.2, an
extinction may be immediately followed by a colonization between two consecutive
time steps. Second, although the colonization (or infection) process is still independent
conditionally on the previous time step, the probability of colonization is different
from Equation (3.1) and is here given by:

P(Z t+1
i = 1|Z t

i = 0;Z t
pa(i ,t ) = 1) = c (3.2)

where c is a colonization probability and pa(i , t ) is the node which is the parent of
node i from time t to time t + 1. Between two consecutive time steps, each node may
be colonized by a unique node which is called its parent. This parent node may change
from one step to another. Therefore, the colonization path is actually a tree, once a
root vertex ∆ and edges from ∆ to nodes (i , 1), 1¶ i ¶ n, have been added (cf. Figure
3.5 for an illustration). Formally, we let N ∗ := {∆} ∪N be the augmented set with
nm + 1 elements and we let T denote the tree on N ∗ resulting from the completion
of the colonization path with the root∆

∆

1
2
3
4
5













nodes

1 2 3 4 t

T 1 T 2 T 3

Figure 3.5 – Graphical model associated to an example of tree T = (T 1,T 2, . . . ).

Because its edges only link vertices at time t to vertices at time t + 1, T can be
sliced into m − 1 oriented bipartite graphs T t (1 ≤ t ≤ m − 1), that each defines the
parents nodes for the transition from time t to time t+1. More specifically, we denote
by {[i j ] ∈ T t } the event that makes i the parent of j during the transition from time
t to time t + 1. In the proposed modeling, the tree T is random and its distribution
is defined as follows. We associate a prior weight βi j with each oriented edge [i j ]
and assume that, at each time t , each node j samples its parent i with probability
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proportional to βi j . As a consequence, the probability of a tree T is

π(T ) = B−1
m−1
∏

t=1

∏

[i j ]∈T t

βi j (3.3)

where B :=
∑

T
∏m−1

t=1
∏

[i j ]∈T t βi j . The weightsβi j can be seen as a way to account
for some prior knowledge about the likelihood of each edge or as parameters of the
model that need to be inferred.

Then, conditionally on the tree structure the distribution of the data is derived by
using the Markov assumption:

π(Z | T ) =π(Z1)
m−1
∏

t=1
π(Z t+1 | Z t ,T t ) =

n
∏

j=1

π(Z1
j )

m−1
∏

t=1

∏

i , j :[i j ]∈T t

φt
i j ,

where φt
i j :=π(Z t+1

j | Z t
j ,Z t

i , [i j ] ∈ T t ) which is given by

φt
i j Z t+1

j = 1 Z t+1
j = 0

Z t
j = 1 Z t

i = 1 1− e e
Z t

j = 1 Z t
i = 0 1− e e

Z t
j = 0 Z t

i = 1 c 1− c
Z t

j = 0 Z t
i = 0 0 1

. (3.4)

Remark. In the proposed modeling the marginal probability for a susceptible node
to get colonized depends on the fraction of colonized nodes in an implicit manner,
through the choice of its parent (which may or may not be colonized). A more ex-
plicit dependence, such as the one given by Equation (3.1) cannot be cast in the tree-
structured model we propose as it introduces a dependence with respect to the whole
population.

Inferring the contact network. Taking advantage of the tree structure of the dy-
namic contact process T , we use the matrix tree theorem [31] to compute the sum
over the latent tree set as a cofactor of the Laplacian matrix associated to the matrix
containing the terms ψt

i j =φ
t
i jβi j . Therefore, the likelihood deriving from the prob-

ability distribution of Z is:

`(e , c ;Z) =π(Z) =
∑

T

π(Z | T )π(T ) =
m−1
∏

t=1

∏

j

ψt
+ j

Â

∏

j

(β+ j )
m−1

where β+ j :=
∑

i βi j and ψt
+ j :=

∑

i ψ
t
i j , that is

ψt
+ j =























(1− e)
∑

i βi j if Z t
j = 1, Z t+1

j = 1,
e
∑

i βi j if Z t
j = 1, Z t+1

j = 0,
c
∑

i βi j Z
t
i if Z t

j = 0, Z t+1
j = 1,

−c
∑

i βi j Z
t
i +

∑

i βi j if Z t
j = 0, Z t+1

j = 0.

From this likelihood expression, we can derive maximum likelihood estimates
(MLE) for e and c . The estimate for e is explicit while the one for c corresponds
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Figure 3.6 – Network of seed choice influences between farmers. This network was obtained by
taking the most probable neighbor for each farmer from the inferred edge probabilities.

to an optimization. If we plug the MLE of e and c , we compute the probabil-
ity that an edge [i j ] was used at least once in the dynamic evolution. More pre-
cisely, we consider the complementary sets on trees Ti j := {T ∈ T : ∃t , [i j ] ∈ T t }
and T i j := {T ∈ T : ∀t , [i j ] /∈ T t } and the corresponding events Ei j := {T ∈ Ti j }
and Ei j := {T ∈ T i j }, where the latter states that [i j ] never appears along the tree
T . To assess whether the edge [i j ] is part of the network, we want to compute the
conditional probability

P(Ei j | Z) = 1−P(Ei j | Z) = 1−P(Ei j ,Z)/π(Z) = 1−
∏

t

 

1−
ψt

i j

ψt
+ j

!

. (3.5)

Remark. Other estimation methods can be used. In a Bayesian approach, the parame-
tersβ are seen as a way to set a prior on trees. The posterior distribution of parameters
e and c can be established easily when using conjugate priors. The posterior distribu-
tion of edge probabilities can then be obtained as in Equation (3.5) via Monte Carlo
sampling from the posterior distribution of parameters. Another approach is to see
the proposed model as a mixture model with as many components as possible trees. In
this setting, the weightsβi j act as the parameters ruling the proportions of the mixture
components and their maximum likelihood estimates can be obtained via the EM algo-
rithm [55]. One interest of this approach is that it allows the estimation the weights of
the edges βi j , rather than keeping them fixed at a prescribed value. In practice, none
of these alternatives turned out to significantly improve edge retrieval.

Results. The performance of our method was assessed on synthetic data. A simu-
lated network linking the n nodes was drawn from a given topology (Erdős-Rényi or
preferential attachment). The components of the tree T t giving the parent of the nodes
at a given time step were enforced to have their edges among the edges of the simulated
network. Then, the dynamic model was run from a unique node occupied and all
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the others empty. Finally, the accuracy of our edge inference method was assessed by
measuring its ability to recover the edge of the simulated network. More precisely, we
computed area under curve (AUC) by comparing the conditional edge probabilities
given in Equation (3.5) to the actual edges of this network. A global result is that all
the AUC are larger than 0.5 meaning that it is possible to recover the edges based only
on the observation of nodes status along time. Moreover, the edge inference is easier
when the parameter c is not too large, the network is not too dense and when its topol-
ogy is ER. It is indeed easier to learn from the early time steps of the propagation if
the colonization is not to fast. We then applied our method on real datasets. In collab-
oration with Andrew Flachs and Glenn Stone, we used data on seed inventory along
several years in India [63]. We inferred a network of farmers which aims to capture the
influence among them in seed choice. It is represented in Figure 3.6 by selecting the
most probable edge for each farmer. We mainly noticed that some nodes seem to have
a great influence while some others are organised in small groups. By using covariates
on farmers, we found that edges within the same caste and the same village were more
likely to occur than between.

3.4 ANALYSIS OF NETWORKS

A network may be analyzed through the computation of descriptive statistics [96].
Depending on the scientific community, some specific statistics are focused on; reci-
procity, transition [17] and an emerging power law distribution of the degrees in social
sciences [127]; modularity and nestedness [128, 167, 64] in ecology. To assess the sig-
nificance of a computed value of the statistic, it is compared to its distribution under
a null model. This distribution is obtained by resampling the network under some
constraints (on degrees for instance, see [168] in ecology). Another way to analyze
networks is to resort to probabilistic generative models. They are powerful tools to
model the heterogeneity of connections in networks and they have the advantage of
being agnostic since they do not look for a particular property of the network. When
a probabilistic model is fitted, a particular structure, such as modularity, transitivity,
nestedness, is not sought for. The goal is to unravel the structure of the network from
the fitted component of the probabilistic model.

The simplest random graph model for a network is the Erdős-Rényi model [61]
where all dyads are independent and the probability of an edge is the same. A possible
extension is the Exponential Random Graph Model (ERGM) [143]which is popular in
social science. In this model, the distribution of the graph belongs to the exponential
family and the sufficient statistics count for some local motifs in the network such as
the number of edges, of triangles. In my contributions, I do not consider this model
but I rather focus on latent variable models. The latent variable models for graph are
numerous (see [122] for a recent review). In these models, a latent variable is associated
with each node and the connectivity of a node depends on its latent variable. The latent
variable may lie in a continuous space (Latent Position Cluster Model [81] or Latent
Position Model [34]) or in a discrete space (Stochastic Block Model, SBM [156]). In my
contributions, I worked with the SBM which is flexible enough to be extended quite
naturally to handle multilayer networks. Moreover, the SBM provides a clustering of
all the nodes in the network by recovering the latent discrete variables which is an
interesting feature to analyze the structure of the network.

Note that in this section, we will use the notation Y to denote the random variables
which are defining the network. They are indexed over the set of dyads. Thus, the
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adjacency matrix is the modeled stochastic object and that is why we use a different
notation from the previous notation A.

3.4.1 Background on Block Models for Networks

3.4.1.1 Block Models

The SBM consists in a mixture model on the dyads of a simple network. A random
variable is associated with each dyad, the distribution of this random variable depends
on the latent variables associate with the two nodes involved in the dyad. More specifi-
cally, we denote by Z= (Z1, . . . ,Zn) the latent variables which give the clusters / blocks
the nodes belong to. These latent variables are in the set {1, . . . ,K}where K is the num-
ber of blocks. For all i = 1, . . . , n, we assume

P(Zi = k) i nd= πk .

Conditionally on Z, the random variables on dyads are denoted by Yi j and they follow
independently:

Yi j |Zi ,Z j
i nd∼ F (αZi ,Z j

) . (3.6)

The random variables Yi j are indexed by the set of dyads denoted byA . This set de-
pends on the network, we may haveA = {1, . . . , n}2,A = {(i , j ) : 1≤ i , j ≤ n, i 6= j }
if there is no loop or A = {(i , j ) : 1 ≤ i < j ≤ n} if there is no loop and the rela-
tion is not oriented. Depending on the nature of the links, the distribution F may
be a Bernoulli distribution if the relations are binary (interaction or not), a Poisson
distribution if they correspond to a counting (number of interactions), a Gaussian dis-
tribution (continuous measure of the strength of interaction). The distributionF may
be given with respect to some covariates which are either at the node level (Xi )1≤i≤n
or at the dyad level (Xi j )(i , j )∈A . In the former case, the covariates may be either trans-
ferred at the dyad level by using a function φ computing a distance betweeen them,
for instance: Xi j = φ(Xi ,X j ) = ‖Xi − X j‖, or incorporated as two covariates: Xi
and X j for the dyad (i , j ). When the covariates are transferred at the dyad level the

distribution is then: Yi j |Zi ,Z j
i nd∼ F (αZi ,Z j

+βXi j ). Otherwise, the distribution is:

Yi j |Zi ,Z j
i nd∼ F (αZi ,Z j

+β1Xi +β2X j ). The latter expression makes sense provided
that the relation is oriented. Although most of the literature on SBM focuses on binary
networks [131, 50], modeling valued networks with an SBM is rather natural [115] and
the SBM can be even used when the observations on the dyads are more complex such
as longitudinal observations [121] or text data [20]. The SBM for binary network has
been proven to be identifiable in [30].

By assuming that the nodes belong to blocks that shape their connectivity profile,
the SBM captures the heterogeneity of connections that does exist in many real net-
works. The SBM encompasses a wide variety of typical structure of interaction. Fig-
ure 3.7 provides an illustration of three particular binary network structures modeled
by an SBM. The matrix α contains this structure. We display a network visualization
with the nodes being colored according to their block belonging and the reordered ad-
jacency matrix. The network visualization is not always a simple task and may fail
to unravel the structure. The reordering of the adjacency matrix is sometimes more
informative. Note that on real dataset the blocks are unknown since the variables in Z
are latent. Therefore, neither the coloring of nodes nor the reordering of the adjacency
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matrix is possible until the blocks are recovered by the inference procedure. The as-
sortative structure is maybe the first that comes to mind, the blocks are communities
where the connections are more likely within than between. This structure is similar
to modularity [128]. The nested structure is also a common structure which is looked
for, especially in ecology [64]. The blocks may be organized from the most central /
generalized one to the less central one. In this structure, the individuals belonging to
the least connected block are more likely to be connected with the individuals belong-
ing to the most connected blocks. Finally, a bipartite like structure is displayed where
two groups of two blocks are paired since they are interacting mainly with each other.

We presented above the SBM for simple network. When the network is really bi-
partite the adapted corresponding model is the Latent Block Model (LBM) [74, 94]
a.k.a. bipartite SBM (biSBM) [104]. In this case, there are two sets of latent variables
Z1 = (Z1

1 , . . . ,Z1
n) ∈ {1, . . . ,K1}n and Z2 = (Z2

1 , . . . ,Z2
m) ∈ {1, . . . ,K2}m . All these latent

variables are independent and their distributions are given by the vectors of parameters
π1 and π2: P(Z1

i = k) = π1
k for all i ∈ {1, . . . , n}, k ∈ {1, . . . ,K1} and P(Z2

j = l ) = π2
l

for all j ∈ {1, . . . , m}, l ∈ {1, . . . ,K2}. These latent variables shape the heterogeneity of
interactions: for all (i , j ) ∈ {1, . . . , n}× {1, . . . , m},

Yi j |Z
1
i ,Z2

j
i nd∼ F (αZ1

i ,Z2
j
) . (3.7)

The matrix α is then rectangular of dimension K1×K2.
A limitation of the SBM is that the expected degrees are the same for all nodes in

the same block. Two extensions have been proposed to introduce more heterogene-
ity in the degree distribution, Degree-Corrected SBM (DCSBM) [91] and Popularity-
Adjusted Block Model (PABM) [154, 130]. In the DCSBM, the distribution of Yi j is

either Bernoulli or Poisson and given by: Yi j |Zi ,Z j
i nd∼ F (λiλ jαZi ,Z j

) where λ is a
vector with n elements with some constraints to ensure identifiability. This param-
eter introduces more diversity among the degrees. In a classical SBM, the matrix α
may model both the degree diversity and the specific connection preferences whereas
it models only the connection preferences in a DCSBM. Therefore, the clustering ob-
tained with a DCSBM is not based on the differences of degrees. The PABM considers

that Yi j |Zi ,Z j
i nd∼ F (λiZ j

λ j Zi
) where the matrix Λ = (λ)1≤i≤n,1≤q≤K must satisfies

some identifiability constraints. This matrix gives the popularity of each node with re-
spect to each block / community. The PABM is a generalization of DCSBM and SBM
[154]. Its flexibility lies in the tuning of the degrees respectively to the blocks. In the
DCSBM, a large λi increases uniformly the probability of connection of node i with
any other nodes no matter their respective blocks whereas in PABM, K parameters
(λi1, . . . ,λiK ) tune the probabilities of connection of node i with nodes from the other
blocks.

Another direction to generalize the SBM is to have a more complex latent struc-
ture by allowing either the nodes to belong to several latent blocks which is the over-
lapping SBM (OSBM) [105] or by making each node drawing its block for each dyad
it is involved in which is the Mixed Membership SBM (MMSBM) [1]. In the OSBM,

for each node i the vectors Zi ∈ {0,1}K are drawn as Zi
i nd∼

∏K
i=1 Bern(πk ) and then

Yi j |Zi ,Z j
i nd∼ F (ZT

i W Z j+ZT
i U+ZT

j V +w∗)where W is a K×K matrix accounting
for the interaction between the blocks, U ,V are K vectors accounting for specific out-
going and ongoing effects and w∗ a scalar acting as an offset. The MMSBM assumes that
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Figure 3.7 – Three particular binary network structures modeled through an SBM. First row cor-
responds to an assortative structure, second row to a nested structure, third row to a bipartite like
structure. Left column gives the matrices of α= P(Yi j = 1|Zi ,Z j ), middle column is a network plot
where the colors correspond to the different blocks, right column is the reordered adjacency matrix
with yellow square representing actual edges (Yi j = 1) and purple absence of edge.
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some weights are drawn for each node γ i
i nd∼ Dirichlet(π1, . . . ,πK ). Then for each dyad

(i , j ), two latent variables Zi→ j and Z j→i are drawn independently with probabilities:
∀(k , l ) ∈ {1, . . . ,K}2, P(Zi→ j ) = γi k and P(Z j→i ) = γ j k . They impact the distribu-

tion of Yi j
i nd∼ F (αZi→ j Z j→i

). The mixed membership then lies in the distribution of
weights.

3.4.1.2 Inference and Model Selection

When we are provided with a network Y = (Yi , j )(i , j )∈A , the goal is to estimate the
parameter of the SBM as well as recover the latent variables. In addition to the inference
task, the number of blocks K is unknown and shall be chosen according to the data.

Variational EM algorithm. We start by detailing a variational EM (VEM) inference
procedure for a known K . Since the SBM is a latent variable model, the EM algorithm
[55] appears as a natural idea for inferring it. However, its particular dependency struc-
ture makes the EM algorithm intractable. Thus, a variational approach was proposed
in [50].

We denote the parameters by θ= (α,π). Then, the complete likelihood writes as

log`c (θ;Y,Z) =
n
∑

i=1

K
∑

k=1

1{Zi=k}πk +
∑

(i ,i ′)∈A

K
∑

(k ,k ′)=1

1{Zi=k ,Zi ′=k ′} f (Yi i ′ ,αkk ′) (3.8)

where f is the log-density ofF . Thus the observed likelihood is:

`(θ= (α,π);Y) =
∑

Z∈{1,...,K}n
log`c (θ;Y,Z) . (3.9)

The sum over Z is then intractable as soon as either n or K becomes large. The EM
algorithm is not practicable here since the distribution of Z conditioned to Y (P(·|Y;θ))
is not tractable because of the dependencies in Z. In lieu of this posterior distribution,
we use a variational approximation which consists of seeking for a distribution such
that the elements of Z are independent:

RY,τ(Z) =
n
∏

i=1

K
∏

k=1

(τi k )
1Zi=k , where τi k = PRY,τ

(Zi = k). (3.10)

The goal is then to maximize the lower bound of the likelihood with respect to θ
andR :

Iθ(R) = log`(θ;Y)−KL[R ,P(·|Y;θ)], (3.11)

where KL stands for the Kullback-Leibler divergence.
The VEM algorithm produces a sequence (RY,τ(t ) ,θ

(t )) by alternating the two
steps:

VE step: Find τ(t+1) by maximizing Iθ(t )(RY,τ). This update is not explicit and can be
achieved through fixed point relations.

M step: Find θ(t+1) by maximizing Iθ(RY,τ(t+1)) which is equivalent to maximize
∑n

i=1
∑K

k=1 τ
(t+1)
i k

πk +
∑

(i ,i ′)∈A
∑K
(k ,k ′)=1 τ

(t+1)
i k

τ(t+1)
i ′k ′

f (Yi i ′ ,αkk ′) i.e. the com-
plete likelihood where the indicator functions on Z have been replaced with the
parameters τ of the variational distribution. For classical distributionsF on Y,
the update is explicit.
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We presented the highlights of the VEM inference for the specific case of SBM. This
algorithm can be adapted to infer LBM. As in the EM algorithm the initialization has
a major importance and shall be carefully chosen in pratice. On a theoretical note, the
consistency of the VEM estimates has been established for the SBM in [12] and the
LBM in [24] while the behavior of P(Z|Y; θ̂) is studied in [114] for the same models.

Selection of the number of blocks. Many model selection criteria such as AIC or
BIC consist in penalizing the likelihood. An Integrated Classification Likelihood (ICL)
has been proposed in [13]. It has proven its capacity to outline the clustering structure
in networks in [50] for simple networks, [94] for bipartite networks or [115] for val-
ued networks. Its success comes from the fact that when traditional model selection
criteria essentially involve a trade-off between goodness of fit and model complexity,
ICL values not only goodness of fit but also clustering sharpness. We provide below
its expression in the case of an undirected binary network:

ICL(K) = log`c (θ̂K ;Y, Ẑ)− pen(K) (3.12)

where
pen(K) =

1
2
{(K − 1) log(n)+ (K(K + 1)/2) log (n(n− 1)/2)} .

The term Ẑ may correspond to either the maximum a posteriori block recovery issued
from the distribution RY,τ(Z) or to their approximated posterior expectations given
by the parameters τ defined in Equation (3.10). We then choose K such that ICL(K) is
maximum.

3.4.2 Contributions

My contributions in the statistical analysis of networks are of two kinds. Some of them
consist in extending the SBM to different kinds of multilayer networks [JP8, JP11, P6,
P2]. These models were inferred on motivating datasets issued from sociology and
ecology. They provided us with in-depth joint analyses of all the layers. The other one
deals with the consideration of the network sampling effect when inferring an SBM
[JP5].

Multilayer Networks There is a growing interest in multilayer networks. The term
multilayer may refer to a large number of cases (see [136] for a review in ecology). It
ranges from dynamic networks [95] that I have not considered in my work, to mul-
tiplex, multilevel and multipartite networks that I worked on. We define below mul-
tiplex, multilevel and multipartite networks and show how we extended the SBM to
handle them. The identifiability of the extended SBMs was proven. For each extension,
we adapted the VEM algorithm and the ICL criterion for inference and the selection
of the number of blocks. Simulation studies were performed to assess the efficiency of
the inference and the model selection. Furthermore, the extensions were motivated by
datasets that we present below.

3.4.2.1 Multiplex Networks

In a multiplex network, several edges accounting for different kind of relationship be-
tween nodes occur. For instance, in a social network, two individuals may be tied
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Figure 3.8 – Illustration of a multiplex network. For each dyad, two kinds of link may exist. They
are respectively displayed by red and blue edges.

by a professional relationship, friendship or both (see Figure 3.8 for an illustration).
One may expect that these two possible relationships are not independent. More in-
terestingly, the dependence between the two relationships may vary from a group of
individuals to another. Therefore, fitting an SBM with a multivariate Bernoulli dis-
tribution on dyads for multiplex networks will help to identify these different groups.
More precisely, we assume that there are Q possible kinds of relationships between two
nodes. Therefore, the variables Yi j ∈ {0,1}Q encode the effective edges in the network
corresponding to the elements of the vectors being 1. In the multiplex SBM, Equation
(3.6) is replaced with

Yi j |Zi ,Z j
i nd∼ BernQ ((αw

Zi ,Z j
)w ) (3.13)

where BernQ is a multivariate Bernoulli distribution in dimension Q, w ∈ {0,1}Q and
the parameters αw

Zi ,Z j
correspond to the probabilities P(Yi j = w|Zi ,Z j ) = α

w
Zi ,Z j

. The

parameters are such that:
∑

w α
w
Zi ,Z j

= 1 resulting in 2Q−1 free parameters to estimate

per couple of blocks.
In [JP8], we posited this model, proved its identifiability and developed the dedi-

cated VEM inference and number of blocks selection through an adapted ICL criterion.
Note that we encoded the inference for the multiplex SBM for Q = 2 in the R package

blockmodels [109].

Applications. The multiplex extension of the SBM was motivated in [JP8] by an ap-
plication to an advice network between French cancer researchers. These data come
from E. Lazega [107] who studied the relations of advice between French cancer re-
searchers identified as “Elite” conjointly with the relations of their respective laborato-
ries. Since the focus is on Elite researchers, it is almost a one-to-one correspondance be-
tween researchers and labs. That is why we can consider the lab relationship as an undi-
rect relationship between researchers. Therefore, the researcher network is a multiplex
network on which we fitted our multiplex SBM. Figure 3.9 displays the marginal and
conditional (given the existence or not of an undirect relation through the labs) prob-
abilities of a direct relation between researchers belonging to the 4 different blocks. It
shows that the existence of a connection (exchange of resources) between labs clearly
increases the probability of connection (sharing advice) between researchers. The re-
inforcement of this probability of connection is clearly outstanding in block 2. In this
block, the researcher connections are quite unlikely within the block or with other
blocks. However, conditionally to the existence of a laboratory connection, the re-
searcher connections become more important especially with block 4. Researchers in
block 3 seem to be the least affected by the connections provided by their laboratories.
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This clustering demonstrates that not all researchers benefit on equal terms from the
institutional level. Some researchers are more dependent on their laboratories in terms
of connections.

P(R=1)

1

2
3

4

P(R=1|L=0)

1

2
3

4

P(R=1|L=1)

1

2
3

4

Figure 3.9 – Marginal probabilities of Researcher connections between and within blocks (top) and
probabilities of Researcher connections between and within blocks conditionally on absence (bottom
left-hand-side) or presence (bottom right-hand-side) of Lab connection. Node size is proportional to
the block size. Edge width is proportional to the probabilities of connection; if this probability is
smaller than 0.1, edges are not displayed.

In another collaboration with Emmanuel Lazega, we applied the multiplex SBM
on a dataset which is still focused on the French cancer researchers but where the two
possible relations are advice and competition [JP11]. In addition to identifying from
whom the researchers seek advice, they were asked who they considered their com-
petitors. Interestingly, we were able to highlight that most researchers take the risk of
seeking advice from colleagues whom they identify as direct competitors.

3.4.2.2 Multilevel Networks

Multilevel networks arise in sociology of organizations and collective action when will-
ing to study jointly the social network of individuals and the interaction network of
organizations the individuals belong to. Indeed, the individuals not only interact with
each others but are also members of interacting organizations. Following [108], one
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Figure 3.10 – Illustration of a multilevel network following an MLVSBM. Inter-organizational
level is on the top and inter-individual level is on the bottom. The various shades of blue depict
the blocks of individuals and the various shades of red depict the blocks of organizations. The outer
circles around the nodes of the individuals represent the blocks of the organizations they are affiliated
to. The dashed links stand for the affiliations.

might think that these two types of interactions (between individuals and between or-
ganizations) are interdependent, the individuals shaping their organizations and the
organizations having an influence on the individuals. We aim to propose a statistical
model for multilevel networks in order to understand how the two levels are inter-
twined and how one level impacts the other.

In [P2], we proposed the extension Multilevel SBM (MLVSBM) which can handle
jointly the inter-individual and the inter-organisational networks and which relies on
the affiliation matrix to make the two networks interdependent. We start by introduc-
ing the notations, then we provide the MLVSBM.

Let us consider nI individuals involved in nO organizations. We encode the net-
works into two adjacency matrices as follows. Let YI be the nI × nI matrix repre-
senting the inter-individual network and let YO be nO × nO matrix representing the
inter-organizational network. These matrices may be symmetric or not, with loop or
not, binary or valued. Moreover, the two matrices may be of different nature. For
instance, YO may be a symmetric binary matrix and YI may be an asymmetric valued
matrix. In addition to the two interaction matrices, we have the affiliation matrix A
which is a nI × nO binary matrix such that:

Ai j =
¨

1 if individual i belongs to organization j,
0 otherwise

.

Moreover, A is contrained on its rows: ∀i = 1, . . . , nI ,
∑nO

j=1 Ai j = 1 since we assume
that any individual belongs to a unique organization. A synthetic example of a multi-
level network is given in Figure 3.10.

The MLVSBM is a blockmodel where individuals and organisations are clustered
into blocks (respectively KI and KO blocks). The blocks of organisation are given by
random variables ZO such that: for all j ∈ {1, . . . , nO}, k ∈ {1, . . . ,KO},

P(Z j = k) i nd= πO
k . (3.14)
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The dependence between the two levels is modeled through the assumption that the
memberships of the individuals ZI depend on the blocks of the organizations (ZO ) they
are affiliated to. More precisely, for all i ∈ {1, . . . , nI }, k ∈ {1, . . . ,KI },

P(Z I
i = k|ZO

j ,Ai j = 1) i nd= γkZO
j

, (3.15)

where γ is a KI ×KO matrix such that
∑KI

k=1
γk l = 1 ∀l ∈ {1, . . . ,KO}. Conditionally

on the latent variables ZO , YO follows a regular SBM with connection parameters in
the matrix αO and similarly for YI conditionally on ZI with parameters in αI .

The identifiability of the MLVSBM is proven under fairly general assumptions and
we derive the following proposition stating in which cases the two levels are indepen-
dent.

Proposition 4. In the MLVSBM, the two following properties are equivalent:

1. ZI is independent on ZO ,

2. γk l = γk l ′ ∀l , l ′ ∈ {1, . . . ,KO}

and imply that:

3. YI and YO are independent.

Then, the VEM inference and the selection of the number of block can be derived.

Application. The dataset dealt with in the previous section on French cancer re-
searchers corresponds originally to a multilevel network. However, the fact that most
labs contain only one researcher makes the MLVSBM not really suited to these data.
We infer the MLVSBM on another dataset concerned with the economic network of
audiovisual firms and the informal network of their sales representatives during a tele-
vision program trade fair [23]. These data were collected by face-to-face interviews. At
the individual level, people were asked to select from a list the individuals from which
they obtain advice or information during or before the trade fair. This level consists of
128 individuals who were affiliated to 109 organizations, each one containing from one
to six individuals. At the inter-organizational level, the deal network (deals between
organizations signed since the last trade fair) was collected.

In Figure 3.11, we provide synthetic views of the inferred MLVSBM. These rep-
resentations are useful to understand how the networks are structured and to unravel
some particular features. In [P2], the results are commented in depth. On a quick note,
we point out that the loop in block 3 of individuals is an unexpected interesting struc-
ture that was unraveled thanks to the MLVSBM. Indeed, most of the relations happen
between nodes from different blocks since the blocks correspond to groups of sellers
or groups of buyers as confirmed by additional available covariates on the individuals.
The loop in block 3 has an interesting sociological interpretation since it shows that in
spite of competition between their firms, some individuals are still exchanging advice
which was deemed as a coopetition.

3.4.2.3 Generalized Multipartite Networks

Multipartite networks are a generalization of bipartite networks. In a bipartite net-
work, the nodes (representing the interacting entities) are partitioned into two disjoint
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Figure 3.11 – Multilevel network of the Promoshow East trade fair 2011. Top: the deal network for
the organizations and bottom: the advice network for the individuals. A: Mesoscopic view of the
multilevel network. Nodes stand for the blocks, donut charts show the relation between ZO and ZI .
Black edges are the probabilities of connection αI and αO , blue edges stand for P(Y I

i i ′ = 1|ZO
Ai

,ZO
Ai ′
).

For sake of clarity only edges with probabilities above the density are shown. B: View of the network.
The size of a node is proportional to its centrality degree. Colors represent the clustering obtained
with the multilevel SBM. C: Adjacency matrices of the advice network between individuals and the
deal network between organizations. Entries are reordered by block from left to right and top to
bottom.
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Figure 3.12 – Illustrations of bipartite (left), multipartite (center) and generalized multipartite net-
works (right). The colors stand for the different functional groups.

sets and an edge links a node from one set to a node from the other set (see Figure 3.12,
left). In a multipartite network, the nodes are divided into more than two sets and
edges link entities from different sets (see Figure 3.12, middle). In what follows, these
pre-specified sets of nodes will be referred to as functional groups. Such multipartite
networks arise in ecology when studying the interactions between several groups of
species such as the interactions plant/pollinator, plants/ants, etc [138, 49] or in biol-
ogy when analyzing networks issued from multi-omics datasets involving proteins, etc.
[134]. Generalized multipartite networks are an extension of multipartite networks:
the nodes are still partitioned into functional groups but the interactions may occur
not only between different functional groups but also within some of the functional
groups (see Figure 3.12, right).

More notations are needed to define the dataset corresponding to a multipartite
network. We consider that there are Q functional groups and within each functional
group, there are nq individuals (q = 1, . . . ,Q). The collection of networks is indexed
by pairs of functional groups (q , q ′) (q and q ′ in {1, . . . ,Q}). The set L denotes the
list of pairs of functional groups for which we observe an interaction network. For
any (q , q ′) ∈ L , the interaction network is encoded in a matrix Y qq ′ . The general-
ized multipartite network is then the collection of networks Y =

�

Y qq ′
�

(q ,q ′)∈L
. For

each network, S qq ′ is an additional notation which refers to the list of all the possible
interactions. This extension was motivated by two applications:

1. The dataset 1 is issued from [49]. This ecological network gathers mutualistic
relations between plants and pollinators, plants and ants, and plants and fru-
givorous birds, resulting into Q = 4 functional groups, namely plants (q = 1),
pollinators (q = 2), ants (q = 3) and birds (q = 4) and L = {(1,2), (1,3), (1,4)}.
Y 1q ′

i i ′ = 1 if the plant species i has been observed at least once in a mutualistic in-
teraction with the animal species i ′ of functional group q ′ during the observation
period, 0 otherwise.

2. The dataset 2 comes from [163] and [164]. They collected the oriented network
of seed circulation between farmers –resulting in a non-symmetric adjacency ma-
trix – and the crop species grown by the farmers, resulting in an incidence matrix.
Noting q = 1 for the farmers and q = 2 for crop species we getL = {(1,1), (1,2)}.
Y 11

i i ′ = 1 if farmer i gives seeds to farmer i ′ (oriented relation), 0 otherwise and
Y 12

i j = 1 if farmer i cultivates crop species j , 0 otherwise.
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To extend the SBM to the multipartite block model (MBM) which is able to handle
generalized multipartite network, we assume a block clustering within each functional
group. Then, for each interaction network Y qq ′ with (q , q ′) ∈L , we assume either an
SBM if q ′ = q or an LBM otherwise. More precisely, ∀q = 1, . . . ,Q, ∀i ∈ {1, . . . , nq},
∀k ∈ {1, . . . ,Kq}:

P(Z q
i = k) i nd= πq

k
.

Then, ∀(i , i ′) ∈S qq ′ ,

Y qq ′

i i ′ |{Z
q
i ,Z q ′

i ′ }
i nd∼ Fqq ′(α

qq ′

Z q
i Z q′

i ′

). (3.16)

This model is a generalization of the SBM and the LBM. Indeed, the previous equa-
tions reduce to the SBM ifL = {(1,1)} and to the LBM ifL = {(1,2)}. Our extension
assumes that the latent structures Z are shared among the Y qq ′ i.e. if a functional group
q is at stake in several Y qq ′ , the same Zq impacts the distributions of the corresponding
interaction matrices. In other words, the clusters gather individuals sharing the same
properties of connection in the full collection of networks. Obviously, if each func-
tional group appears in only one element ofL , the MBM reduces to independent SBMs
or LBMs. The distribution Fqq ′ are indexed by the functional groups in interaction
since we may assume different distributions for the interaction matrices.

We derived a VEM algorithm and an ICL model selection criterion in [P6]. In
the MBM, the practical choice of the number of blocks is computationally intensive
since if we assume that Kq ∈ {1, . . . ,K?

q} for all q , then we should compare
∏Q

q=1 K?
q

models through the ICL criterion. For each model, the VEM algorithm has to be run
starting from a large number of initialization points chosen carefully (due to its sensi-
tivity to the starting point), resulting in an unreasonable computational cost. Instead,
we propose to adopt a stepwise strategy, resulting in a faster exploration of the model
space combined with efficient initializations of the VEM algorithm. The procedure we
suggest is given in Algorithm 3. It is implemented in the R package GREMLIN [R1].

Applications. The inference and the model selection were performed on the two
datasets presented above. Figures 3.13 and 3.14 show respectively mesoscopic repre-
sentations of datasets 1 and 2. By summarizing the multipartite networks, they offer a
global vision of the interactions at stake. We compared the blocks issued by the MBM
with blocks issued by SBM or LBM inferred on the different interaction matrices. We
show that the joint inference provided by the MBM results in more complex blocks
since the inference relies on more information. An alternative could be to infer sep-
arate SBM or LBM and then create the intersection of outputted blocks. However,
this approach would result in too many blocks while our MBM provides a trade-off
between the number of blocks and the available information.

3.4.3 SBM inference from Sampled Data

The inference and the model selection were presented in Section 3.4.1.2 under the
assumption that the sampling of Y is complete. Here, we consider cases of bi-
nary networks where all the nodes are observed but information regarding the pres-
ence/absence of an edge is missing for some dyads. In other words the adjacency matrix
contains missing values, a situation often met with real-world networks. For instance
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Algorithm 3: Model selection strategy for MBM

Initialization Starting from a modelM (0) =M (K (0)1 , . . . ,K (0)Q ).
Iterations
Given a current modelM (m) =M (K (m)1 , . . . ,K (m)Q ), the m-th iteration is:

• Split proposals. For any q such that K (m)q <K?
q , consider the model

M (m+1)q
+ =M (K (m)1 , . . . ,K (m)q + 1, . . . ,K (m)Q ).

· Propose K (m)q initializations by splitting any of the K (m)q current clusters into
two clusters.

· From each of the K (m)q initialization points, run the VEM algorithm and keep

the better variational estimate θ̂M (m+1)q
+

.

· Compute the corresponding ICL(M (m+1)q
+ ).

•Merge proposals. For any q such that K (m)q > 1, consider the model

M (m+1)q
− =M (K (m)1 , . . . ,K (m)q − 1, . . . ,K (m)Q ).

· Propose K (m)q (K (m)q − 1)/2 initializations by merging any pairs of clusters

among the K (m)q clusters.

· From each initialization point, run the VEM algorithm and keep the better
variational estimate θ̂M (m+1)q

−
.

· Compute the corresponding ICL(M (m+1)q
− ).

• SetM (m+1) = arg max
M(m)

ICL(M ) where

M(m) = {M (m)} ∪
⋃

q∈{1,...Q}{M
(m+1)q
+ } ∪ {M (m+1)q

− }.
IfM (m+1) 6=M (m) iterate, otherwise stop.

in social sciences, network data consists in interactions between individuals: the set
of individuals is fixed, possibly known from a census. Information about the pres-
ence/absence of an edge is only available when at least one of the two individuals is
available for an interview, otherwise it is missing (see [96, 80] for a review of sampling
techniques).

Sampled networks. From the adjacency matrix, we may derive for convenience an
n × n binary matrix R such that Ri j = 1 if Yi j is observed (i.e. we know if there is
or not an edge on the dyad (i , j ), respectively Yi j = 1 or Yi j = 0), Ri j = 0 otherwise
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Figure 3.13 – Mesoscopic view of dataset 1. Nodes stand for the inferred blocks, their size are pro-
portional to the size of the blocks and the width of the edges are proportional to the probability of
connection between/within blocks. Edges corresponding to probabilities of connection lower than
0.01 are not plotted.

(Yi j = NA). The natural idea is to replace Equation 3.8 with:

log`c (θ;Y,Z) =
∑

i∈N o

K
∑

k=1

1{Zi=k}πk +
∑

(i ,i ′)∈Do

K
∑

(k ,k ′)=1

1{Zi=k ,Zi ′=k ′} f (Yi i ′ ,αkk ′) (3.17)

whereN o = {i ∈ {1, . . . , n}, s .t .
∑

j Ri j +
∑

j R j i > 0} ⊂N the set of nodes involved
in at least an observed dyad and Do = {(i , j ) ∈ A : Ri j = 1} the set of observed
dyads. Considering this complete likelihood is correct under the assumption that the
sampled data are Missing At Random (MAR) defined in the seminal work of D. Rubin
on missing data [144]. Indeed, the joint distribution of the SBM and the sampling
mechanism are separable in the MAR case. Then, the SBM likelihood is optimized on
the observed data only.

In [JP5], we also dealt with Not Missing At Random (NMAR) sampling mecha-
nisms and derived the VEM inference. In these cases, the joint complete likelihood
which incorporates the sampling and the SBM on the full network must be consid-
ered. Before giving the inference method, we present the three usual types of miss-
ingness (MCAR: Missing Completely At Random, MAR and NMAR) for SBM. This
typology depends on the relations between the adjacency matrix Y, the latent struc-
ture Z and the sampling R, so that the missingness is characterized by four directed
acyclic graphs displayed in Figure 3.15. MCAR samplings include random dyad and
random node samplings. In random dyad sampling, each dyad has the same probabil-
ity, say ρ to be observed independently of the others while in random node sampling,
the nodes are sampled with the same probability independently of the others. Sam-
pling a node means observing all the dyads in which it is involved, i.e. if node i is
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Figure 3.14 – Mesoscopic view of dataset 2. Nodes stand for the inferred blocks, their size are pro-
portional to the size of the blocks and the width of the edges are proportional to the probability of
connection between/within blocks. farm stands for farmers and spe for species. The probability of
connection below 0.2 are not plotted.
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Figure 3.15 – DAGs of relationships between Y,Z and R in the framework of missing data for SBM.
DAG where R is a parent node are not reviewed since the network exists before the sampling design
acts upon it. The systematic edge between Z and Y is due to the definition of the SBM. Note that the
DAG (b )may correspond to MAR or NMAR samplings.

sampled we have Ri j = R j i = 1 for all j . The distinction between MAR and MCAR
samplings is subtle. In MCAR, the sampling is totally independent on the network
while in MAR, one may consider a sequential sampling such as snowball sampling.
The snowball sampling starts with a first batch of nodes. All the dyads involving these
nodes are observed. Then, the second step consists of observing the nodes (with all
their dyads) connected to the first batch. These steps are called waves and are repeated
a few times leaving potentially some nodes unobserved. In [JP5], we detailed some
particular NMAR samplings which could be encountered in practical situations. We
present them below.

Definition 1 (Double standard sampling). Letρ1,ρ0 ∈ [0,1]. Double standard sampling
consists in observing dyads with probabilities

P(Ri j = 1|Yi j = 1) = ρ1, P(Ri j = 1|Yi j = 0) = ρ0. (3.18)

Denote So =
∑

(i , j )∈Do Yi j , S̄o =
∑

(i , j )∈Do(1−Yi j ) and similarly for S m , S̄ m where
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the superscript m indicates the sum over the missing dyads. In this dyad-centered sam-
pling design satisfying DAG (b ), the log-likelihood is

log`(ψ;R|Y) = So logρ1+S̄o logρ0+Sm log(1−ρ1)+S̄m log(1−ρ0), with ψ= (ρ0,ρ1).
(3.19)

This sampling is likely to happen especially in cases with ρ1 > ρ0 which means that it
is easier to detect an existing link than its absence.

Definition 2 (Star sampling based on degrees – Star degree sampling). Star degree
sampling consists in observing all dyads corresponding to nodes selected with probabil-
ities {ρ1, . . . ,ρn} such that ρi = logistic(a + b Di ) for all i ∈ N where (a, b ) ∈ R2,
Di =

∑

j Yi j and logistic(x) = (1+ e−x )−1.

In this node-centered sampling design satisfying DAG (b ), the log-likelihood is

log`(ψ;R|Y) =
∑

i∈N o

logρi +
∑

i∈N m

log(1−ρi ), with ψ= (a, b ). (3.20)

In this sampling, we assume that the degree is somehow related to the popularity of a
node and that this popularity makes them more likely to be sampled (when b > 0).

Definition 3 (Class sampling). Class sampling consists in observing all dyads correspond-
ing to nodes selected with probabilities {ρ1, . . . ,ρQ} such that ρq = P(i ∈ N o | Zi = k)
for all (i , q) ∈N ×K.

In this node-centered sampling design satisfying DAG (d ), the log-likelihood is

log`(ψ;R|Z) =
∑

i∈N o

∑

q∈Q
Zi q logρq+

∑

i∈N m

∑

q∈Q
Zi q log(1−ρq ), with ψ= (ρ1, . . . ,ρQ ).

(3.21)
Here, we assume the blocks stand for different communities and that the sampling does
not have the same ability to reach them.

We proved under mild conditions the identifiability of two MCAR samplings (dyad
and node centered samplings) and of the class sampling. The identifiability concerns
at the same time the sampling parameters and the SBM parameters. Moreover, the
consistency and asymptotic normality of VEM estimators are proven in [116] for the
MCAR dyad centered sampling.

Inference for NMAR situations. The VEM algorithm must be adapted for NMAR
cases by incorporating the sampling likelihood. Therefore, the lower bound of the
likelihood which we aim to maximize is no longer the one given in Equation 3.11 but
it is:

Iθ(R(Ym,Z)) = log`(θ,ψ;Yo,R)−KL
�

R(Ym,Z),P(·|Y
o;θ,ψ)

�

.

whereψ stands for the sampling parameters. The variational distributionR(Ym,Z) con-
cerns both the missing dyads Ym and the latent variable Z. We seek forR(Ym,Z) in the
class of independent distribution:

R(Ym,Z) =R(Ym) ·R(Z) =
∏

(i , j )∈Dm

ν
Yi j

i j (1− νi j )
1−Yi j ·

∏

i∈N

K
∏

k=1

(τi k )
1Zi=k , (3.22)

where the νi j s and τi ks are the parameters to be optimized in the VE step of the algo-
rithm. The optimization in νi j is specific to the sampling design and must be derived
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for each case while the optimization in τi k is almost generic. Similarly, in the M step
the optimization is generic in θ and specific to the sampling in ψ. Concretely, when
optimizing in τi k or in θ the update formulas are similar to the full observed situa-
tion. The NA in Ym are replaced with their variational corresponding parameters νi j .
In [JP5], the complete formulas were derived for the three NMAR samplings presented
above. An ICL criterion may be derived not only to select the number of blocks K (as
for fully observed network, see Equation (3.12)) but also for selecting the most appro-
priate sampling design when it is unknown. In particular, this criterion may be used
to decide whether an MAR sampling fits better the data than an NMAR sampling. For
an undirected network, the ICL criterion is

ICL(K) = log`c (θ̂K , ψ̂;Yo,Ym,R, Ẑ)− pen(K) (3.23)

where

2pen(K) =

( �

d + K(K+1)
2

�

log
�

n(n−1)
2

�

+(K − 1) log(n) for dyad-centered sampling
K(K+1)

2 log
�

n(n−1)
2

�

+(d +K − 1) log(n) for node-centered sampling
,

where d is the dimension of ψ the vector of sampling parameters.
In Figure 3.16, we show on synthetic data the benefits of taking into account the

NMAR sampling in the inference over MAR inference when the NMAR sampling
is actually responsible for the missing data. The adapted NMAR VEM inference has
almost a perfect recovery of blocks and estimation of αwhile the errors in MAR VEM
inference increase as the difference ρ1−ρ0 moves away from 0.

Importance of accounting for missing values in real networks. We dealt with
two datasets where there are missing data on the adjacency matrix. We compared the
clusterings obtained under the assumptions of an MAR or an NMAR samplings. It
has been shown that there are big differences and the nature of the sampling cannot
be overlooked. The first dataset is concerned with seed exchanges of sorghum in the
region of Mount Kenya. The data were collected and analyzed in [102, 101]. The sam-
pling is node-centered since the exchanges are documented by interviewing farmers
who are asked to declare to whom they gave seeds and from whom they receive seeds.
Since an interview is time consuming, the sampling is not exhaustive. A limited space
area was defined where all the farmers were interviewed. The network is thus collected
with missing dyads since information on the potential links between two farmers who
were cited but not interviewed is missing. Since we only know that the sampling is
node-centered, we fitted SBM under the three node-centered sampling designs random
node sampling (MAR), class and star degree samplings (NMAR). The ICL criterion is
minimal for 10 blocks under the star degree sampling and for 11 blocks under the class
degree sampling. The clusterings between the SBMs obtained with either class or star
degree sampling remain close from each other and both unravel a strong community
structure. The adjusted Rand Index (ARI) [139] between these two clusterings is 0.6.
The model selected by ICL for MAR sampling is composed by 11 blocks. The ARIs be-
tween MAR clustering and the two others are lower (around 0.4). Although, the ICL
criteria computed for the three sampling designs are a slightly in favor of the MAR
sampling, the clusterings under NMAR conditions are more connected to the social
structure. The social structure is indeed given by additional covariates on nodes which
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Figure 3.16 – Double standard setting: estimation error of α and adjusted Rand index averaged
over 500 simulations for affiliation, bipartite and star topologies.
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are the dialect spoken by the farmer and the neighborhood where they live. We high-
lighted that these two covariates have a stronger relation with the clusterings issued
under NMAR samplings than with the one under an MAR sampling.

The second dataset we consider is a Protein-Protein Interaction network which
encodes possible relations between proteins. We extracted the interaction network of
the neighborhood of the Estrogen receptor protein from the platform string [161]. It
provides a valued network. The values are scoresωi j ∈ [0,1]which indicate how likely
is an interaction between a pair of proteins. We cast this network in the framework
of binary network with missing data on dyads by choosing a threshold γ such that the
network is:

Yγ = (Y γ )i j =







1 ifωi j > 1− γ ,
NA if γ ≤ωi j ≤ 1− γ ,
0 ifωi j < γ .

(3.24)

We fixed the threshold γ = 0.35 and fitted an SBM under random dyad sampling (MAR)
and double standard sampling (NMAR). The two corresponding SBMs have 11 clusters
for MAR sampling and 13 clusters for NMAR sampling. The ARI between the two
clusterings is around 0.39: this is mainly due to a large block in the random-dyad MAR
clustering which contains much more nodes than any of the blocks in the NMAR
clustering. The latter dispatches many of these nodes in four blocks. We relied on the
Gene Ontology annotation [4] to prove that this finest clustering of the nodes is more
relevant from the biological point of view.

Taking into account covariates. In T. Tabouy’s Ph. D. thesis [162], we also consid-
ered the extension when covariates are available and may impact both the distribution
of the random network Y and the sampling process R. Conditional dependencies of
the possible models are represented with a DAG in Figure 3.17. We choose to study
only cases where covariates represented by X impact either the sampling design or the
network model directly. Finally, we do not consider any edge between nodes Y, Z
and node R since we require that conditionally on X the missing data are MAR. Some
models were proposed for each DAG in [162] and we showed an interesting equiva-
lence between a case which is MAR provided that the covariates are taken into account
and its NMAR counterpart when the covariates are not observed. The details of the
inference algorithms for the proposed models are also in the manuscript.

X

Z

Y

R XZ

Y R

XZ

Y R

(model 1) (model 2) (model 3)

Figure 3.17 – DAGs of relationships between Y,Z,R and X considered in the framework of missing
data for SBM with covariates.

All the inference algorithms and the corresponding ICL criterion computations
for the SBM with the different samplings described above (with or without covariates)
are implemented in the R package missSBM [R2]. A software paper describing the
package and providing some examples of use is available [P5].
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3.5 PERSPECTIVES

My perspectives on networks can be grouped in three main themes. The first one is
concerned with the inference of the underlying network which impacts a diffusion
process as in Sections 3.2 and 3.3. Since the problem is complex, the inference may be
limited to coarse descriptions of the network. The second perspective is about the sam-
pling effect when inferring a random graph model on a network and also an efficient
inference of the missing data relying on all available information. Finally, the third per-
spective is focused on the derivation and the analysis of specific summary statistics such
as robustness in ecology, under blockmodel assumption for the interaction network.

3.5.1 Inferring Networks in a Dynamic Model

Inferring network features from genetic and demographic data. During the in-
ternship of Sixtine de Cussac (AgroParisTech, spring 2016), we explored the possibility
to recover the social mechanism which structures the seed circulation from data on ge-
netic diversity in the field. We assumed a dynamic genetic metapopulation model in
discrete time for n farms (nodes) which grow plants during m time steps. A generation
(transition from a time step to the next one) for each farm consists in the steps plotted
in Figure 3.18. First an extinction takes place with a fixed probability. If the extinction
does not occur, the next generation of plants in this farm is simulated from a genetic re-
production model. Otherwise, the seeds are recovered either from a neighboring farm
(model M1) or from the market (model M2) where all farmers put their seeds in com-
mon. The neighbors are defined on the basis of an observed contact network among
farmers. We assumed a very simple genetic reproduction model where we focused on a
unique biallelic locus. The goal was to decide whether model M1 or M2 is at play in the
seed circulation from the observation of the neighboring network and the genetic data
for the plants in all the farms at generation m. Since the likelihood is intractable, stan-
dard statistical decision methods were not possible. We resorted to simulation-based
methods in the spirit of Approximate Bayesian computation methods [117]. We used
the simulation model under M1 and M2 to create a large dataset on which we learnt a
statistical decision rule to decide which of M1 or M2 is the most likely with respect to
the genetic data. Then, we could apply this decision rule on real data. Obviously, the
genetic data are too large. They need to be summarized into small dimension statis-
tics. It makes sense to use diversity indices such as the fixation index (FST) [174] or
diversity indices such as β-diversity [171]. As it was expected, these indices allowed
us to separate M1 from M2 since M2 has a homogenizing effect by redistributing seeds
from all the farms to the farms which go extinct. Since the data are too scarce, it is
unrealistic to try to infer the whole network. We rather focused on coarse informa-
tion such as simply determining whether the network was effectively used to recover
seed. Estimating additional parameters such as the extinction rate and the parameters
driving the reproduction would make the decision harder.

The question of assessing to what extent the social relationships among farmers
shape the cultivated diversity is an emerging issue. The work done during the intern-
ship was a very first step in this direction. We could consider more complex genetic
data with markers both under selection or not and less assumptions on the neighboring
network. Thus, the goal could be to infer some topological features of the networks
from the data. To do so, we aim to use CropMetaPop which is an agent-based model
build on the Python simuPOP [135]. It combines the evolution of plants represented
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Figure 3.18 – One generation of the dynamic model for a farm with seed circulation according to
models M1 or M2.

as multilocus genomes in several populations which interact according to a social net-
work.

These works make some interesting connection with the perspectives on stochastic
simulators (see Section 2.3.2). Indeed, the metapopulation genetic models are stochastic
simulators. Inferring their inputs on the basis of some observations can be cast to a
calibration task. We may resort to emulation in order to make the calibration possible
as an alternative to ABC methods.

Inferring networks. The inference of the contact network is reachable provided that
the full dynamic for all nodes is observed as described in Section 3.3. The approach
could be extended to more complex propagation models, the propagation rules being
encoded in the terms φt

i j as in Equation (3.4). More than two levels of infection (‘sick’
or ‘healthy’) can be considered: when the contamination duration is known, the model
can be extended to an SIR model, by simply adding a ‘recovered’ state. In the same vein,
the effect of environmental factors could also be accounted for via a regression term in
the transition rates encoded in the φt

i j . The difficulty of the parameter inference will
mostly depend on the expression of φt

i j , but the complexity of the network recon-
struction will remain the same and will still benefit from the computational efficiency
achieved through the Matrix-tree theorem. Additional information on contacts could
also be encoded in the parameters βi j (Equation (3.3)) as prior information on pos-
sible contacts. For instance, if some information on distances between individuals is
available, a parametric form for βi j linking the probability of contact to the distance
could be assumed.

The network could also be available at a coarser scale, the nodes representing coun-
tries or geographical area and not individuals. The data would be the number of in-
fected cases, recovered cases and the goal would be to identify the main paths of con-
tamination.

3.5.2 Sampled Networks

Inference for other NMAR samplings. Natural perspectives from the contribution
of Section 3.4.3 are to develop inference for other NMAR samplings, some of them re-
lated to distribution for Y different from the Bernoulli distribution. In particular, ex-
tending this contribution to DCSBM or PABM is sensible since it may be assumed that
the probability to observe a node depends on its degree, popularity. We encountered
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many cases in our simulation studies where the inference dedicated to an MAR case
was still performing well in spite of the NMAR sampling. On a theoretical note, we
aim to investigate to what extent the inference under MAR condition remains robust.

Sampling effect in ecological interaction networks. In ecology, sampling a net-
work is labor-intensive and many datasets only reveal a subset of the existing interac-
tions. Obviously, the sampling process can induce enormous biases in the statistical
analyses of the networks which have not been taken into account in most papers con-
cerned with the analysis of ecological network structure. This raises doubts regard-
ing the current understanding of the structure of pollination networks [19]. In par-
ticular, recent studies [159] suggest that observed nestedness in interaction networks
mainly results from sampling effects. Moreover,the impact of the completeness of the
sampling on many metrics such as modularity or nestedness is demonstrated in [142].
Completeness of sampling for a species is defined as the proportion of observed inter-
actions in which that species is involved. This completeness may be evaluated either
through accumulation curves which model the rate of new interaction observations
over time [142] or through external data assessing the abundance of the different in-
teracting species [18]. The natural idea for metrics to cope with sampling effect is to
evaluate its significance with respect to null models that take into account this sampling
effect. Such null models are obtained through resamplings of the networks which keep
the marginal distribution of abundance (degrees of rows and columns) fixed. The null
model is not unique and its choice may lead to different conclusions (see [58] for a
software and a discussion on null models). Contrary to metrics, the blockmodels be-
ing probabilistic model, it is quite easy to incorporate the sampling effect within the
model.

To illustrate the incorporation of the sampling effect, we use data provided in [18].
This dataset contains a plant-ant network which is obtained from counts of ant colonies
attending extrafloral and floral nectaries of plants. Then, this is a weighted incidence
matrix where rows correspond to ants species and columns correspond to extrafloral
or floral nectaries of plant species. In addition to the incidence matrix, independent
abundance estimates for ant colonies based on a sugar bait experiment and number
of plant individuals on which any insect were recorded on nectaries are available as
abundance estimate. This abundance may represent a sampling effect since the more
abundant a species, the more complete its sampling. Indeed, an abundant species is
more likely to have most of its interaction observed than a less abundant one. There-
fore, a higher degree may correspond to two indistinguable situations if there is no
external data on abundance: either the species is more abundant than the others or
the species shares more connection than the others. On this data we fit three block-
models. Model 1 corresponds to a classical LBM with a distribution on dyads as a

Poisson distribution: Yi j |Z1
i ,Z2

j
i nd∼ P (αZ1

i ,Z2
j
). Model 2 is a practical implementation

of a degree correction in the LBM where a covariate is associated with each species:

Yi j |Z1
i ,Z2

j
i nd∼ P (αZ1

i ,Z2
j
µi ν j ) where µi , 1 ≤ i ≤ n and νi , 1 ≤ j ≤ n are positive pa-

rameters and µ1 = ν1 = 1 for the sake of identifiability. The covariates account for
a potential effect of the respective abundance of the species on the interaction. Then
the parameters α should account for the network structure beyond the abundance ef-
fect. Eventually, model 3 incorporates the external abundance estimates as covariates:

Yi j |Z1
i ,Z2

j
i nd∼ P (exp(αZ1

i ,Z2
j
+βRi + δS j )) where Ri is the independent abundance
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Figure 3.19 – Summaries of the incidence network provided by the 3 models (from left to right:
model 1, 2 and 3). Nodes in the upper level represent ants and plants in the lower level. Node
sizes are proportional to block sizes. Edge widths are proportional to λ parameters of the Poisson
distribution between blocks.

measure for row i , S j is the independent abundance measure for row j and β, δ are
parameters to be estimated. Note that only the external abundance estimates have
a medium correlation with row (ants) degrees (0.50) and a high correlation with col-
umn (plant) degrees (0.99). Therefore this external information is not totally redondant
with the degree. The inferred LBM matrix are plotted in Figure 3.19, the numbers of
blocks correspond to optimal choices according to ICL criterion. With model 1, we
find a nested structure which is mainly driven by the relative abundance of species.
The nested structure disappears when inferring model 2. The only structure that re-
mains consists of two blocks of ants and two blocks of plants which are paired with
each other (ants in the orange block are more likely to connect with plants in the green
block and ants in the blue block with plants in the yellow block). The last model finds
also something quite different. It consists in a mixture between a nested structure and
some particular associations. The ARIs between the different clustering on ants or
on plants outputed by the three inferred models were computed, leading to moderate
values between 0.17 and 0.64. Eventually, taking into account the relative abundance
makes a difference in the discovered underlying structure and this question should be
carefully addressed when collecting or analyzing such data.

When such external abundance data are not available, the full observation data in-
cluding the full observation times of each interaction may help to fit accumulation
curves [129]. For instance, if the network at stake is a plant-pollinator network, we
fit for each plant a model such as the Clench model: S(t ) = at/(1+ b t ) where t is
the time of observation and S the number of observation of pollinators (from differ-
ent species). The parameters a and b are estimated from the full data and their ratio
gives the maximal number of pollinator for a given plant a/b . Then for each plant,
we compute the completeness as the ratio between the observed number of pollinators
and this theoretical maximal number of pollinators. These completeness scores may
be used as above as covariates in an LBM.

Another solution could be to propose a model for the sampling process as done
in Section 3.4.3. The major difference lies in the fact that the data Y for a sampled
binary interaction network consists only of 1 and NA. There is no observed 0 since
the absence of observation does not mean for sure that the interaction is not possible.
This process is inherently NMAR which then requires dedicated inference algorithms.
The sampling process may depend on some external abundance measure or on the
completeness scores.

An exciting application for these works could be to analyze data from citizen sci-
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ence program where the sampling is not done by scientific campaign but by oppor-
tunistic sampling. For example, Spipoll (www.spipoll.org) aims to monitor plant-
pollinator interactions in France. They gather more than 300,000 records across sea-
sons by hikers or nature enthusiasts. These data are massive but their drawback is the
sampling distribution. Some area are more popular than others, it is more likely to
have people collecting data when the weather is nice and so on. Analyzing these data
in spite of their specific sampling is a major challenge and is of obvious interest.

Missing dyad reconstruction through different layers. When observing a multi-
layer network (multiplex, multipartite, multilevel), the quality of data collection may
differ between layers. For instance, interaction data for a given layer may be easier to
collect or may be already extensively documented. Then, under an MAR sampling as-
sumption, this well observed layer may help in many ways. In multipartite networks,
since the latent blocks are assumed to be shared among the layers, the identification
of latent blocks is made more robust. In multiplex networks, besides a better identi-
fication of the latent blocks, the interdependencies between the layers help to predict
the dyads in the missing layers. In [52], the authors propose to use one or more layers
for predicting some missing dyads in another layer. They also assess the interdepen-
dencies between layers by computing the improvement in the missing dyad prediction
due to the other layers. However, although the multilayer networks they consider
are actually multiplex networks, they do not model the dependence between dyads
from different layers beyond the one induced by the common latent blocks. Using our
MBM (Section 3.4.2.3) we could extend this approach to generalized multipartite net-
work and using our multiplex SBM (Section 3.4.2.1) for multiplex networks, we could
improve the missing dyad prediction and have a more accurate interdependency assess-
ment through our more complex modeling of dependence between dyads. In [P2], we
used this idea to assess the interdependence between the two levels.

The other layers through our multilayer networks not only help to improve the
prediction of missing dyads but also to correct spurious information as suggested in
[38] or [79]. Spurious information in a network is a result of an error in the data
collection. The dyads are not labeled as missing but incorrectly observed. In such
situations, the other layers could help to cast doubt on some observations which seem
unlikely and then prompt to check.

3.5.3 Robustness

A key question in ecological networks is their ability to withstand perturbations
[59, 6], for instance, the effect on the whole network of the extinction of a species.
A typical analysis in ecological networks consists in removing a species (node) in a
network and recording the subsequent additional (referred to as ‘secondary’) extinc-
tions. This number of secondary extinctions is then considered as a stability metric of
the network, called robustness. In plant-pollinator networks, the primary extinctions
may concern the pollinator. Then, the secondary extinctions are counted as the plants
which are no longer connected to any pollinator. The pollinator species are removed
sequentially and the cumulative number of secondary extinctions among plants are
plotted. A robustness index is then computed from this curve. It may be either the
area under curve or the number of extinctions among pollinator which leads to halve
the number of plants. The robustness index depends on the sequence of removed polli-

www.spipoll.org
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nator species. Therefore, the robustness indices based on many sequences are averaged
to remove this dependence.

An alternative idea is to fit a blockmodel on the interaction network. From the
inferred blockmodel, the mean robustness is tractable analytically. Here, we consider
a binary interaction network Y ∈ {0,1}p×n with p plants divided into K1 blocks, n
pollinators divided into K2 blocks. We assume that Y follows an LBM with parameters
(π1

q )1≤q≤K1
for the marginal block distribution of plants, (π2

q )1≤q≤K2
for the marginal

block distribution of pollinators and connection parameters α ∈ [0,1]K1×K2 . If m pol-
linators are removed uniformly, for each plant i we compute the probability that it
goes extinct as

P(∩n−m
j=1 (Yi j = 0)) =

K1
∑

q=1
P(∩n−m

j=1 (Yi j = 0|Z1
i = q) ·P(Z1

i = q) ,

=
K1
∑

q=1

 

n−m
∏

j=1

P(Yi j = 0|Z1
i = q)

!

·P(Z1
i = q) ,

=
K1
∑

q=1

 

1−
K2
∑

l=1

π2
lαq l

!n−m

π1
q .

Therefore, the mean number of secondary extinction among plants for m extinctions
of pollinators is

p ·
K1
∑

q=1

 

1−
K2
∑

l=1

π2
lαq l

!n−m

π1
q .

By summing up over m, we obtain the area under the curve of the cumulative sec-
ondary extinctions. This results incorporates both the variability of the sequence of
pollinator extinction and the variability over realizations of the LBM with these param-
eters. These computations will help to compare different structure of LBM with re-
spect to their associated robustness in which ecologists have a major interest. Moreover,
computing the robustness from the LBM may be an interesting way not to rely too
much on the sampled network which remains an imperfect observation of the struc-
turing interactions. The structure of the network captured by the LBM lies mainly in
the parameters π1,π2 and the parameter α up to a constant. Indeed, the number of
plants, pollinators and even the global density are contingent to the particular obser-
vation and hence to the sampling. We can derive robustness with different values for
n, p and the global density. By doing so, we can then cope with some sampling effects
and produce fairer comparisons between networks. For instance, if we assume that the
sampling may miss nearly one half of possible interactions but we still assume that we
are able to infer the structure of the LBM (π1,π2 and the parameter α up to a constant),
we can leverage the LBM assumption by doublingα and computing the robustness with
this adjusted parameter. The comparison of robustness between networks of different
sizes (number of pollinators) or of different densities (which may result of a sampling
effort) is not always fair since these two features have a major impact. Under the LBM
assumption, we can adjust parameters in order to cast the networks in the same setting
where they only differ on their structures leading therefore to a fair comparison.

Finally, all these works can be extended to the cases of multilayer networks with
the same kind of exact computation under different assumptions of blockmodels. In
this framework, the cascading extinction will be the major focus [26].
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